
ON THE COMPATIBILITY OF THE BETTI HARMONIC COPRODUCT

WITH CYCLOTOMIC FILTRATIONS

BENJAMIN ENRIQUEZ AND KHALEF YADDADEN

Abstract. In [Yad2], the second author introduced a Betti counterpart of N -cyclotomic double
shuffle theory for any N ≥ 1. The construction is based on the group algebra of the free group
F2, endowed with a filtration relative to a morphism F2 → µN (where µN is the group of N -th
roots of unity). One of the main results of [Yad2] is the construction of a complete Hopf algebra

coproduct ∆̂W,B
N on the relative completion of a specific subalgebra WB of the group algebra

of F2. However, an explicit formula for this coproduct is missing. In this paper, we show that
the discrete Betti harmonic coproduct ∆W,B defined in [EF1] for the classical case (N = 1) by
the first author and Furusho remains compatible with the filtration structure on WB induced
by the relative completion for arbitrary N . This compatibility suggests that the completion

corresponding to ∆W,B is a candidate for an explicit realization of ∆̂W,B
N .
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1. Introduction

Throughout this paper, let k be a commutative Q-algebra and N be a positive integer. Denote

by µN the group of complex N -th roots of unity with generator ζN := e
i2π
N . We will also use the

following convention

Convention*. For k-submodules A1, . . . , Ak of a k-algebra A and positive integers n1, . . . , nk,
we denote by An1

1 · · ·Ank
k the image of the morphism A⊗n1

1 ⊗ · · · ⊗ A⊗nk
k → A induced by the

product in A. In the expression An1
1 · · ·Ank

k , we write Aj instead of A
nj

j whenever ni = 1

(1 ≤ j ≤ k).

1.1. Context and motivation. Cyclotomic multiple zeta values (CMZVs) are special values
of multiple polylogarithms evaluated at roots of unity, defined by the convergent series:

Li(k1,...,kr)(z1, . . . , zr) :=
∑

m1>···>mr>0

zm1
1 · · · zmr

r

mk1
1 · · ·mkr

r

,

where r, k1, . . . , kr ∈ Z>0 and z1, . . . , zr ∈ µN with (k1, z1) ̸= (1, 1). These values arise as periods
of the motivic fundamental groupoid of the cyclotomic punctured projective line P1 \{0, µN ,∞}
[Del10, Gon05] and are related to associators, mixed Tate motives, and the Grothendieck-
Teichmüller group.
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From this perspective, the double shuffle relations among CMZVs –arising from series expan-
sions and iterated integrals– are encoded in Racinet’s “double mélange et régularisation scheme”
DMRN [Rac02], which is expressed in terms of a graded algebra VDR

N , a graded subalgebra WDR
N

of VDR
N , and a Hopf algebra coproduct ∆W,DR

N on WDR
N . More specifically, this framework is

built on the completions of these graded objects, that is, the topological algebra V̂DR
N and the

complete Hopf algebra (ŴDR
N , ∆̂W,DR

N ) [Rac02, Yad1].

A Betti analogue of this setting was developed by the second author in [Yad2], generalizing
the work of the first author and Furusho in [EF1] (for N = 1), which in turn is inspired by
the unpublished preprint of Deligne and Terasoma [DeT]. Here, the key objects are a filtered

algebra VB
N and subalgebra WB

N of VB
N ; and the completion ŴB

N , equipped with a complete Hopf

algebra coproduct ∆̂W,B
N –called the N -cyclotomic Betti harmonic coproduct– whose defining

property is the conjugation formula [Yad2, Theorem 3.2.4]

(1) ∆̂W,B
N = (compWΦ,N ⊗ compWΦ,N )−1 ◦ ∆̂W,DR

N ◦ compWΦ,N ,

which is valid for any choice of Φ ∈ DMRN ; where compWΦ,N : ŴB
N → ŴDR

N is a comparison

isomorphism [Yad2, Proposition-Definition 3.2.2] attached to Φ.

For N = 1, a Hopf algebra coproduct ∆W,B on WB
1 = WB was explicitly constructed in [EF1,

EF2], the compatibilty of ∆W,B with the filtration on WB for N = 1 was proved, and the

corresponding completed coproduct ∆̂W,B was identified with ∆̂W,B
1 from (1), hence ∆̂W,B

1 =

∆̂W,B. However, for general N , an explicit formula for ∆̂W,B
N is still unknown.

1.2. The main results. Let F2 be the free group generated by two elements denoted X0 and
X1. Consider the group morphism F2 → µN given by

X0 7→ ζN and X1 7→ 1.

Its kernel is the group freely generated by the N + 1 elements [Yad2, Lemma 3.1.1]

XN
0 and Xa

0X1X
−a
0 , for a ∈ [[0, N − 1]].

Denote by IN := ker(kF2 → kµN ) where kF2 → kµN is the k-algebra morphism induced from
the group morphism F2 → µN .

Definition 1.1 ([Yad2, Proposition-Definition 3.1.4]). Let VB
N be the group algebra kF2 equipped

with the algebra filtration given by

FmVB
N :=

{
kF2 if m ≤ 0

Im
N if m > 0

,

where Im
N is the m-th power of the ideal IN (see Convention*).

Definition 1.2 ([Yad2, Proposition-Definition 3.1.13]). Consider the subalgebra WB
N of VB

N
given by

WB
N := k⊕ VB

N (X1 − 1).

It is endowed with the algebra filtration given by

FmWB
N := WB

N ∩ FmVB
N , ∀m ∈ Z.

When N = 1, the filtration (FmVB
1 )m∈Z is the natural filtration of the group algebra kF2 given

by powers of the augmentation ideal. Therefore, the induced filtration on WB
1 corresponds the

one given in [EF1, Sec. 2.1]. We will use the notation VB (resp. WB) instead of VB
1 (resp. WB

1 )
to refer to these naturally filtered algebras.
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It follows from [EF1, Proposition 2.3] that the algebra WB is generated by

X−1
1 and Xn

0 (X1 − 1) for n ∈ Z.

The algebraWB is equipped with a bialgebra structure whose coproduct is the algebra morphism
∆W,B : WB → WB ⊗WB given by (see [EF1, Lemma 2.11])

∆W,B(X−1
1 ) = X−1

1 Y −1
1 ,

and for n ∈ Z,

∆W,B(Xn
0 (X1 − 1)) = Xn

0 (X1 − 1) + Y n
0 (Y1 − 1)−

n−1∑
k=1

Xk
0 (X1 − 1)Y n−k

0 (Y1 − 1),

where one sets X±1
i := X±1

i ⊗ 1 and Y ±1
i := 1⊗X±1

i for i ∈ {0, 1}, and one uses the convention
that for a map f from Z to an abelian group and p, q ∈ Z,

q∑
k=p

f(k) :=


f(p) + · · ·+ f(q) if q > p− 1

0 if q = p− 1

−f(p− 1)− · · · − f(q + 1) if q < p− 1

The following result is the first main theorem of the paper. It states that the coproduct ∆W,B

is actually compatible with the filtration given in Definition 1.2:

Theorem 1.3. For any m ∈ Z, we have

∆W,B(FmWB
N ) ⊂ Fm(WB

N ⊗WB
N ).

Definition 1.4 ([Yad1, §2.1.1]). Let VDR
N be the graded k-algebra1 generated by {e0, e1} ⊔ µN

where e0 and e1 are of degree 1 and elements ζ ∈ µN are of degree 0 satisfying the relations:

(i) ζ · η = ζη; (ii) 1VDR
N

= 1; (iii) ζ · e0 = e0 · ζ;

for any ζ, η ∈ µN ; where “·” is the algebra multiplication2.

Recall from [Yad1, §2.1.1] the subalgebra

WDR
N := k⊕ VDR

N e1

of VDR
N . It is a graded algebra freely generated by ([Yad1, Proposition 2.6(ii)])

Z := {zn,ζ := −en−1
0 ζe1 | (n, ζ) ∈ Z>0 × µN},

where for any (n, ζ) ∈ Z>0×µN the element zn,ζ is of degree n. Moreover, WDR
N is equipped with

a Hopf algebra structure with respect to the harmonic coproduct, which is the algebra morphism

∆W,DR
N : WDR

N → WDR
N ⊗WDR

N given by ([Yad1, Proposition 2.11(i)])

∆W,DR
N (zn,ζ) = zn,ζ ⊗ 1 + 1⊗ zn,ζ +

n−1∑
k=1
η∈µN

zk,η ⊗ zn−k,ζη−1 .

Let gr(VB
N ) be the associated graded algebra of VB

N for the µN -filtration (FmVB
N )m∈Z. For m ∈ Z

and v ∈ FmVB
N , denote by [v]m the image in FmVB

N

/
Fm+1VB

N of the element v.

Proposition 1.5 ([Yad, Theorem 3.1.6] and [Yad, Proposition 3.1.12]).

(a) There exists a graded algebra isomorphism ρVN : VDR
N → gr(VB

N ) uniquely defined by

ζN 7→ [X0]0, e0 7→ [XN
0 − 1]1, e1 7→ [X1 − 1]1.

1in [Yad1, §2.1.1] this corresponds to VG for G = µN .
2which we will omit if there is no risk of ambiguity.
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(b) The graded algebra isomorphism ρVN : VDR
N → gr(VB

N ) restricts to a graded algebra isomor-
phism ρWN : WDR

N → gr(WB
N ).

By Theorem 1.3, the filtered algebra morphism ∆W,B : WB
N → WB

N ⊗WB
N induces the graded

algebra morphism

gr(∆W,B) : gr(WB
N ) → gr(WB

N )⊗ gr(WB
N ).

The following result is the second main theorem of the paper. It states that the associated

graded algebra morphism gr(∆W,B) is in fact the graded algebra morphism ∆W,DR
N .

Theorem 1.6. The following diagram

(2)

WDR
N WDR

N ⊗WDR
N

gr(WB) gr(WB)⊗ gr(WB)

∆W,DR

ρWN ρWN ⊗ρWN

gr(∆W,B)

commutes.

Finally, regarding the topological algebra morphism ∆̂W,B
N given in (1), Theorems 1.3 and 1.6

motivate the following problem:

Problem 1.7. For suitable a, b ∈ Z, show that the topological algebra morphism ∆̂W,B
N is the

completion (w.r.t. the filtration (FmWB
N )m∈Z) of the algebra morphism AdXa

1 Y
b
1
◦∆W,B.

2. Compatibility of ∆W,B with the filtration (FmVB
N )m∈Z

In this section, we prove Theorem 1.3. To do so, we will start with some preparatory results.

Lemma 2.1. For m ∈ Z>0, we have

(a) FmWB
N = FmVB

N ∩ VB
N (X1 − 1). (b) FmWB

N = Fm−1VB
N (X1 − 1).

(c) FmWB
N is a left VB

N -module.

Proof. For (a) and (b), see [Yad2, Lemma 3.1.14]. (c) follows immediately from (b). □

Lemma 2.2. For m ∈ Z, we have

FmWB
N =


WB

N if m ≤ 0

VB
N (X1 − 1) if m = 1

(XN
0 − 1)m−1k[X0, X

−1
0 ](X1 − 1) +

m−1∑
k=1

FkWB
N · Fm−kWB

N if m ≥ 2

Proof. The result is immediate for m = 0; and for m = 1, it follows from Lemma 2.1 (b).
We now consider the case m ≥ 2. Since (FnWB

N )n∈Z is a decreasing algebra filtration, then

(3) FmWB
N ⊃

m−1∑
k=1

FkWB
N · Fm−kWB

N .

On the other hand, since XN
0 − 1 and X1 − 1 belong to IN , we obtain the inclusion in the

following

(4) FmWB
N = FmVB

N ∩ VB
N (X1 − 1) ⊃ (XN

0 − 1)m−1k[X0, X
−1
0 ](X1 − 1),
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and the equality follows from Lemma 2.1 (a). From (3) and (4), we obtain the following inclusion

FmWB
N ⊃ (XN

0 − 1)m−1k[X0, X
−1
0 ](X1 − 1) +

m−1∑
k=1

FkWB
N · Fm−kWB

N .

Let us now prove the converse. The group morphism F2 → Z given by X0 7→ 1 and X1 7→ 0
admits a section given by 1 7→ X0. Then kF2 is the direct sum of the image of the section
kZ → kF2, which is k[X0, X

−1
0 ], and of the kernel of kF2 → kZ, which is the two-sided ideal of

kF2 generated by X1 − 1. Let us denote by VB
N (X1 − 1)VB

N this ideal3.
We derive the direct sum decomposition4

VB
N = k[X0, X

−1
0 ]⊕ VB

N (X1 − 1)VB
N .

Moreover, since VB
N (X1 − 1)VB

N ⊂ IN = ker(kF2 → kµN ), we have

IN = ker
(
k[X0, X

−1
0 ] → kµN

)
⊕ VB

N (X1 − 1)VB
N ,

where k[X0, X
−1
0 ] → kµN is the restriction of kF2 → kµN to k[X0, X

−1
0 ]. Therefore,

(5) IN = (XN
0 − 1)k[X0, X

−1
0 ]⊕ VB

N (X1 − 1)VB
N .

Denote by A0 = (XN
0 − 1)k[X0, X

−1
0 ] and A1 = VB

N (X1 − 1)VB
N . Thanks to (5), we obtain

(6) Im−1
N =

∑
λ:[[1,m−1]]→{0,1}

Aλ(1) · · · Aλ(m−1) = Am−1
0 +

∑
λ:[[1,m−1]]→{0,1}

λ ̸=0

Aλ(1) · · · Aλ(m−1),

where 0 : [[1,m− 1]] → {0, 1} is the zero map.
Set X(0) := XN

0 and X(1) := X1. Since Ai ⊂ VB
N (X(i) − 1)VB

N (for i ∈ {0, 1}), it follows that
for any map λ : [[1,m− 1]] → {0, 1}, we have

(7) Aλ(1) · · · Aλ(m−1) ⊂ VB
N (X(λ(1))− 1)VB

N · · · VB
N (X(λ(m− 1))− 1)VB

N .

Combining equality (6), inclusion (7) for λ ̸= 0, and the equalityAm−1
0 = (XN

0 −1)m−1k[X0, X
−1
0 ],

we obtain

Im−1
N ⊂ (X(0)−1)m−1k[X0, X

−1
0 ]+

∑
λ:[[1,m−1]]→{0,1}

λ̸=0

VB
N (X(λ(1))−1)VB

N · · · VB
N (X(λ(m−1))−1)VB

N .

Since X(i)− 1 ∈ IN (for i ∈ {0, 1}), the right hand side of this inclusion is contained in Im−1
N ,

therefore
(8)

Im−1
N = (X(0)−1)m−1k[X0, X

−1
0 ]+

∑
λ:[[1,m−1]]→{0,1}

λ̸=0

VB
N (X(λ(1))−1)VB

N · · · VB
N (X(λ(m−1))−1)VB

N .

3recall that the algebras VB
N and kF2 are equal. In the sequel, we use the former rather that the latter notation

for denoting the two-sided ideal generated by X1 − 1.
4where the first summand is a subalgebra of and the second summand is a two-sided ideal
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Finally,

FmWB
N =Im−1

N (X(1)− 1)

=(X(0)− 1)m−1k[X0, X
−1
0 ](X(1)− 1)

+
∑

λ:[[1,m−1]]→{0,1}
λ ̸=0

VB
N (X(λ(1))− 1) · · · VB

N (X(λ(m− 1))− 1)VB
N (X(1)− 1)

=(X(0)− 1)m−1k[X0, X
−1
0 ](X(1)− 1)

+
∑
λ∈Λm

VB
N (X(λ(1))− 1) · · · VB

N (X(λ(m− 1))− 1)VB
N (X(λ(m))− 1)

=(X(0)− 1)m−1k[X0, X
−1
0 ](X(1)− 1)

+
∑
j≥2

∑
(k1,...,kj)∈K

(j)
m

(
VB
N (X(0)− 1)

)k1−1 VB
N (X(1)− 1)

(
VB
N (X(0)− 1)

)k2−k1−1

VB
N (X(1)− 1) · · ·

(
VB
N (X(0)− 1)

)kj−kj−1−1 VB
N (X(1)− 1)

⊂(X(0)− 1)m−1k[X0, X
−1
0 ](X(1)− 1)

+
∑
j≥2

∑
(k1,...kj)∈K

(j)
m

Fk1WB
N · Fk2−k1WB

N · · · Fkj−kj−1WB
N

⊂(X(0)− 1)m−1k[X0, X
−1
0 ](X(1)− 1) +

m−1∑
k=1

FkWB
N · Fm−kWB

N ,

where the first equality follows from Lemma 2.1 (b) and the second one from (8). In the third
equality one denotes

Λm := {λ : [[1,m]] → {0, 1} | λ(m) = 1, λ|[[1,m−1]] ̸= 0}

and the equality then follows immediately. In the fourth equality one denotes

K(j)
m := {(k1, . . . , kj) | 1 ≤ k1 < · · · < kj−1 < kj = m},

one also uses Convention* for the definition of
(
VB
N (X(0)− 1)

)k
(for any integer k ≥ 1); and

the equality is induced by the bijection

Λm ≃
⊔
j≥2

K(j)
m , λ 7→ λ−1({0}).

The first inclusion follows from the fact (VB
N (X(0) − 1))k−1VB

N (X(1) − 1) ⊂ FkWB
N (for any

integer k ≥ 1); and the last inclusion from the fact that (FmWB
N )m∈Z is a decreasing filtration

and therefore

Fk2−k1WB
N · · · · · Fkj−kj−1WB

N ⊂ Fkj−k1WB
N = Fm−k1WB

N .

□

Lemma 2.3. For any integer m ≥ 2, we have

∆W,B
(
(XN

0 − 1)m−1k[X0, X
−1
0 ](X1 − 1)

)
⊂ Fm(WB

N ⊗WB
N )
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Proof. Let P (X0, X
−1
0 ) ∈ k[X0, X

−1
0 ]. We have

∆W,B
(
(XN

0 − 1)m−1P (X0, X
−1
0 )(X1 − 1)

)
(9)

= (XN
0 − 1)m−1P (X0, X

−1
0 )(X1 − 1) + (Y N

0 − 1)m−1P (Y0, Y
−1
0 )(Y1 − 1)

− (XN
0 − 1)m−1P (X0, X

−1
0 )Y0 − (Y N

0 − 1)m−1P (Y0, Y
−1
0 )X0

X0 − Y0
(X1 − 1)(Y1 − 1),

where
(XN

0 −1)m−1P (X0,X
−1
0 )Y0−(Y N

0 −1)m−1P (Y0,Y
−1
0 )X0

X0−Y0
is the polynomial F (X0, X

−1
0 , Y0, Y

−1
0 ) ∈

k[X0, X
−1
0 , Y0, Y

−1
0 ] such that

(X0 − Y0)F (X0, X
−1
0 , Y0, Y

−1
0 ) = (XN

0 − 1)m−1P (X0, X
−1
0 )Y0 − (Y N

0 − 1)m−1P (Y0, Y
−1
0 )X0.

Next, we have

(XN
0 − 1)m−1P (X0, X

−1
0 )Y0 − (Y N

0 − 1)m−1P (Y0, Y
−1
0 )X0

X0 − Y0
= −(XN

0 − 1)m−1P (X0, X
−1
0 )

− (Y N
0 − 1)m−1P (Y0, Y

−1
0 ) +

(XN
0 − 1)m−1P (X0, X

−1
0 )X0 − (Y N

0 − 1)m−1P (Y0, Y
−1
0 )Y0

X0 − Y0

= −(XN
0 − 1)m−1P (X0, X

−1
0 )− (Y N

0 − 1)m−1P (Y0, Y
−1
0 )

+
(XN

0 − 1)m−1
(
P (X0, X

−1
0 )X0 − P (Y0, Y

−1
0 )Y0

)
X0 − Y0

+

(
(XN

0 − 1)m−1 − (Y N
0 − 1)m−1

)
P (Y0, Y

−1
0 )Y0

X0 − Y0
Denote by

A(X0, X
−1
0 , Y0, Y

−1
0 ) := −(XN

0 − 1)m−1P (X0, X
−1
0 )− (Y N

0 − 1)m−1P (Y0, Y
−1
0 ),

B(X0, X
−1
0 , Y0, Y

−1
0 ) :=

(XN
0 − 1)m−1

(
P (X0, X

−1
0 )X0 − P (Y0, Y

−1
0 )Y0

)
X0 − Y0

,

C(X0, X
−1
0 , Y0, Y

−1
0 ) :=

(
(XN

0 − 1)m−1 − (Y N
0 − 1)m−1

)
P (Y0, Y

−1
0 )Y0

X0 − Y0
.

Thanks to this, we obtain from equality (9) the following identity

∆W,B
(
(XN

0 − 1)m−1P (X0, X
−1
0 )(X1 − 1)

)
= (XN

0 − 1)m−1P (X0, X
−1
0 )(X1 − 1)(10)

+ (Y N
0 − 1)m−1P (Y0, Y

−1
0 )(Y1 − 1)−A(X0, X

−1
0 , Y0, Y

−1
0 )(X1 − 1)(Y1 − 1)

−B(X0, X
−1
0 , Y0, Y

−1
0 )(X1 − 1)(Y1 − 1)− C(X0, X

−1
0 , Y0, Y

−1
0 )(X1 − 1)(Y1 − 1).

Since XN
0 − 1, X1 − 1 ∈ IN , we have

(11) (XN
0 − 1)m−1P (X0, X

−1
0 )(X1 − 1) ∈ FmVB

N ∩WB = FmWB
N ,

Then the statement (11) implies that

(XN
0 − 1)m−1P (X0, X

−1
0 )(X1 − 1) ∈ FmWB

N ⊗ 1 ⊂ Fm(WB
N ⊗WB

N ),

and
(Y N

0 − 1)m−1P (Y0, Y
−1
0 )(Y1 − 1) ∈ 1⊗FmWB

N ⊂ Fm(WB
N ⊗WB

N ).

On the other hand, we have

A(X0, X
−1
0 , Y0, Y

−1
0 )(X1 − 1)(Y1 − 1) = −P (X0, X

−1
0 )(XN

0 − 1)m−1(X1 − 1)(Y1 − 1)(12)

− P (Y0, Y
−1
0 )(Y N

0 − 1)m−1(Y1 − 1)(X1 − 1)

∈ Fm+1
(
WB

N ⊗WB
N

)
,
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where the “∈” claim follows from the fact that (XN
0 −1)m−1(X1−1)(Y1−1) ∈ FmWB

N ⊗F1WB

and that FmWB
N ⊗F1WB is a left (VB

N ⊗ VB
N )-module, which implies

−P (X0, X
−1
0 )(XN

0 − 1)m−1(X1 − 1)(Y1 − 1) ∈ FmWB
N ⊗F1WB.

Swapping between X and Y enables us to apply the same argument to show that

−P (Y0, Y
−1
0 )(Y N

0 − 1)m−1(Y1 − 1)(X1 − 1) ∈ F1WB ⊗FmWB
N .

Moreover, we have

B(X0, X
−1
0 , Y0, Y

−1
0 )(X1 − 1)(Y1 − 1)(13)

=
P (X0, X

−1
0 )X0 − P (Y0, Y

−1
0 )Y0

X0 − Y0
(XN

0 − 1)m−1(X1 − 1)(Y1 − 1)

∈ FmWB
N ⊗F1WB

N ⊂ Fm+1
(
WB

N ⊗WB
N

)
,

where the “∈” claim follows from the fact that (XN
0 −1)m−1(X1−1)(Y1−1) ∈ FmWB

N ⊗F1WB

and that FmWB
N ⊗F1WB is a left (VB

N ⊗ VB
N )-module.

Moreover, we have

C(X0, X
−1
0 , Y0, Y

−1
0 )(X1 − 1)(Y1 − 1)(14)

= P (Y0, Y
−1
0 )Y0

XN
0 − Y N

0

X0 − Y0

(XN
0 − 1)m−1 − (Y N

0 − 1)m−1

XN
0 − Y N

0

(X1 − 1)(Y1 − 1)

= P (Y0, Y
−1
0 )Y0

(
N−1∑
k=0

Xk
0Y

N−1−k
0

)
m−2∑
l=0

(XN
0 − 1)l(X1 − 1)︸ ︷︷ ︸
∈F l+1WB

N⊗1

(Y N
0 − 1)m−2−l(Y1 − 1)︸ ︷︷ ︸

∈1⊗Fm−1−lWB
N

∈ Fm(WB
N ⊗WB

N ).

Therefore, it follows from identity (10) that

∆W,B
(
(XN

0 − 1)m−1P (X0, X
−1
0 )(X1 − 1)

)
∈ Fm(WB

N ⊗WB
N ).

□

Proof of Theorem 1.3. If m ≤ 0, the result is immediate. Let us assume that m ≥ 1. We will
proceed with the proof by induction on m.
For m = 1, denote by ε : WB

N → k the counit of the bialgebra (WB
N ,∆W,B). We have

∆W,B(F1WB
N ) = ∆W,B(ker(ε)) ⊂ ker(ε⊗ ε) = F1(WB

N ⊗WB
N ),

where the first equality follows from the identity F1WB
N = ker(ε); the second equality from

the counit identity ∆W,B ◦ ε = (ε ⊗ ε) ◦ ∆W,B; and the third equality from the identity
F1(WB

N ⊗WB
N ) = ker(ε⊗ ε).

Suppose now that the statement is true until m− 1. We have

∆W,B(FmWB
N ) = ∆W,B

(
(XN

0 − 1)m−1k[X0, X
−1
0 ](X1 − 1) +

m−1∑
k=1

FkWB
N · Fm−kWB

N

)

⊂ ∆W,B
(
(XN

0 − 1)m−1k[X0, X
−1
0 ](X1 − 1)

)
+

m−1∑
k=1

∆W,B
(
FkWB

N

)
·∆W,B

(
Fm−kWB

N

)
⊂ Fm(WB

N ⊗WB
N ) +

m−1∑
k=1

Fk(WB
N ⊗WB

N ) · Fm−k(WB
N ⊗WB

N )

⊂ Fm(WB
N ⊗WB

N ),
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where the equality follows from Lemma 2.2, the first inclusion follows by linearity of ∆W,B and
compatibility with the product; the second inclusion from Lemma 2.3 and induction hypothesis;
and the last inclusion from the fact that

(
Fm(WB

N ⊗WB
N )
)
m∈Z is an algebra filtration, which

follows from the fact that (FmWB
N )m∈Z is an algebra filtration. □

3. Computation of gr(∆W,B)

In this section, we prove Theorem 1.6.

Proof of Theorem 1.6. Let us prove that diagram (2) of graded algebra morphisms commutes
for any degree m ≥ 1.
For a ∈ [[0, N − 1]], zm,ζaN

is a degree m element of WDR
N and we have

(15) ρWN (zm,ζaN
) = [(XN

0 − 1)m−1Xa
0 (1−X1)]m.

Recall that

∆W,DR
N (zm,ζaN

) = zm,ζaN
⊗ 1 + 1⊗ zm,ζaN

+
∑

1≤k≤m−1
0≤b≤N−1

zk,ζbN
⊗ zm−k,ζa−b

N
.

Therefore, we obtain(
ρWN ⊗ ρWN

)
◦∆W,DR

N (zm,ζaN
)

=
[
(XN

0 − 1)m−1Xa
0 (1−X1) + (Y N

0 − 1)m−1Y a
0 (1− Y1)

+
∑

1≤k≤m−1
0≤b≤N−1

(XN
0 − 1)k−1Xb

0(1−X1)(Y
N
0 − 1)m−k−1Y a−b

0 (1− Y1)
]
m

On the other hand, by taking P (X0, X
−1
0 ) = Xa

0 in (10), we obtain that

∆W,B
(
(XN

0 − 1)m−1Xa
0 (1−X1)

)
= (XN

0 − 1)m−1Xa
0 (1−X1) + (Y N

0 − 1)m−1Y a
0 (1− Y1)

+ Ã(X0, Y0)(1−X1)(1− Y1) + B̃(X0, Y0)(1−X1)(1− Y1) + C̃(X0, Y0)(1−X1)(1− Y1),

where

Ã(X0, Y0) := −(XN
0 − 1)m−1Xa

0 − (Y N
0 − 1)m−1Y a

0 ,

B̃(X0, Y0) := (XN
0 − 1)m−1X

a+1
0 − Y a+1

0

X0 − Y0
,

C̃(X0, Y0) :=
(XN

0 − 1)m−1 − (Y N
0 − 1)m−1

X0 − Y0
Y a+1
0 .

Thanks to (12), (13) and (14), it follows that

Ã(X0, Y0)(1−X1)(1− Y1) ∈ Fm+1(WB
N ⊗WB

N ),

B̃(X0, Y0)(1−X1)(1− Y1) ∈ Fm+1(WB
N ⊗WB

N ),

C̃(X0, Y0)(1−X1)(1− Y1) ∈ Fm(WB
N ⊗WB

N ).
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Therefore, thanks to equality (15), we obtain

gr(∆W,B) ◦ ρWN (zm,ζaN
)

=
[
(XN

0 − 1)m−1Xa
0 (1−X1) + (Y N

0 − 1)m−1Y a
0 (1− Y1) + C̃(X0, Y0)(1−X1)(1− Y1)

]
m
.

One checks that

C̃(X0, Y0) =

(
m−1∑
k=1

(XN
0 − 1)k−1(Y N

0 − 1)m−k−1

)(
N−1∑
b=0

Xb
0Y

N−1−b
0

)
Y a+1
0

=
∑

1≤k≤m−1
0≤b≤N−1

(XN
0 − 1)k−1Xb

0(Y
N
0 − 1)m−k−1Y N+a−b

0 .

Finally,

gr(∆W,B) ◦ ρWN (zm,ζaN
)

=
[
(XN

0 − 1)m−1Xa
0 (1−X1) + (Y N

0 − 1)m−1Y a
0 (1− Y1)

+
∑

1≤k≤m−1
0≤b≤N−1

(XN
0 − 1)k−1Xb

0(1−X1)(Y
N
0 − 1)m−k−1Y a−b

0 (1− Y1)
]
m
.

This concludes the proof. □
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