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ON THE COMPATIBILITY OF THE BETTI HARMONIC COPRODUCT
WITH CYCLOTOMIC FILTRATIONS

BENJAMIN ENRIQUEZ AND KHALEF YADDADEN

ABSTRACT. In [Yad2], the second author introduced a Betti counterpart of N-cyclotomic double
shuffle theory for any IV > 1. The construction is based on the group algebra of the free group
F», endowed with a filtration relative to a morphism F>» — un (where pun is the group of N-th
roots of unity). One of the main results of [Yad2] is the construction of a complete Hopf algebra
coproduct KLV’B on the relative completion of a specific subalgebra W® of the group algebra
of F5. However, an explicit formula for this coproduct is missing. In this paper, we show that
the discrete Betti harmonic coproduct A™® defined in [EF1] for the classical case (N = 1) by
the first author and Furusho remains compatible with the filtration structure on W¥ induced
by the relative completion for arbitrary N. This compatibility suggests that the completion

corresponding to A¥'B is a candidate for an explicit realization of ALV’B.
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1. INTRODUCTION

Throughout this paper, let k be a commutative Q-algebra and N be a positive integer. Denote

by un the group of complex N-th roots of unity with generator (n := e'N . We will also use the
following convention

Convention*. For k-submodules A1, ..., Ay of a k-algebra A and positive integers ny, ..., nyg,
we denote by A7'--- Ay* the image of the morphism A" @ ... ® A?n’“ — A induced by the
product in A. In the expression A7'--- A%, we write Aj instead of A;-Lj whenever n; = 1
(1<j<k).

1.1. Context and motivation. Cyclotomic multiple zeta values (CMZVs) are special values
of multiple polylogarithms evaluated at roots of unity, defined by the convergent series:

Z?ll e Zm’r
3 T
Ll(k17_._7kr)(21, e 7Zr) = E 7]61 PR
mq" - my"
m1>->mp>0 71 r
where r, k1,...,k € Zso and 21,..., 2, € py with (k1,21) # (1,1). These values arise as periods

of the motivic fundamental groupoid of the cyclotomic punctured projective line P*\ {0, px, oo}
[Dell0, Gon05] and are related to associators, mixed Tate motives, and the Grothendieck-
Teichmiiller group.
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From this perspective, the double shuffle relations among CMZVs —arising from series expan-
sions and iterated integrals— are encoded in Racinet’s “double mélange et régularisation scheme”
DMRy [Rac02], which is expressed in terms of a graded algebra V]]\D,R, a graded subalgebra W]]\D,R

W,DR
AN

of VOR and a Hopf algebra coproduct on W]]\),R. More specifically, this framework is

built on the completions of these graded objects, that is, the topological algebra 17]]\3,13“ and the
complete Hopf algebra (W\]%R, A}/VV’DR) [Rac02, Yadl].

A Betti analogue of this setting was developed by the second author in [Yad2], generalizing
the work of the first author and Furusho in [EF1] (for N = 1), which in turn is inspired by
the unpublished preprint of Deligne and Terasoma [DeT]. Here, the key objects are a filtered

algebra V]% and subalgebra WJI\S, of V]%; and the completion V/\Z%, equipped with a complete Hopf

algebra coproduct ALV’B —called the N-cyclotomic Betti harmonic coproduct— whose defining
property is the conjugation formula [Yad2, Theorem 3.2.4]

(1) AK,V’B = (compg\fN ® compé\fN)_l o AK,V’DR o compé\fN,
which is valid for any choice of ® € DMRy; where comp}f)‘fN : 17\/\]% — @R is a comparison

isomorphism [Yad2, Proposition-Definition 3.2.2] attached to ®.

For N = 1, a Hopf algebra coproduct A™:B on WlB = W8 was explicitly constructed in [EF1,
EF2], the compatibilty of AYB with the filtration on W® for N = 1 was proved, and the
corresponding completed coproduct AY'B was identified with A}/V’B from (1), hence A}/V’B

AWB, However, for general N, an explicit formula for AK,V’B is still unknown.

1.2. The main results. Let F, be the free group generated by two elements denoted Xy and
Xj. Consider the group morphism Fy — pun given by

Xo+— ¢y and X7 — 1.
Its kernel is the group freely generated by the N + 1 elements [Yad2, Lemma 3.1.1]
XY and X§X1X,¢, for a € [0, N — 1].
Denote by Zy := ker(kFy — kuy) where kFy — kuy is the k-algebra morphism induced from
the group morphism Fo — pupy.

Definition 1.1 ([Yad2, Proposition-Definition 3.1.4]). Let V¥ be the group algebra kF equipped

with the algebra filtration given by
]__mvj% . kFy %fmSO,
Iy iftm >0

where Z7} is the m-th power of the ideal Zy (see Convention™).

Definition 1.2 ([Yad2, Proposition-Definition 3.1.13]). Consider the subalgebra WY of V%
given by
WE =ka V(X1 —1).
It is endowed with the algebra filtration given by
FWE = WE N F™WE, vm e Z.

When N = 1, the filtration (F™VP),,cz is the natural filtration of the group algebra kF, given
by powers of the augmentation ideal. Therefore, the induced filtration on W} corresponds the
one given in [EF1, Sec. 2.1]. We will use the notation VB (resp. W?) instead of VP (resp. WP)
to refer to these naturally filtered algebras.
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It follows from [EF1, Proposition 2.3] that the algebra W& is generated by
Xt and XXy — 1) for n € Z.

The algebra WP is equipped with a bialgebra structure whose coproduct is the algebra morphism
AWEB  WB - WB @ WB given by (see [EF1, Lemma 2.11])

and for n € Z,
n—1
AWB(XF(X1 ~ 1)) = X3 (X1 — 1)+ Yy (i - 1) = 3 X5(X1 - DY (v - 1),
k=1

where one sets XijEl = X,L»jEl ® 1 and YijEl =1 (X)XijEl for i € {0,1}, and one uses the convention
that for a map f from Z to an abelian group and p,q € Z,

q f)+-+ flq) ifg>p—1
Zf(k‘):: 0 ifg=p—1
k=p —flp=1) == flg+1) ifg<p-1

The following result is the first main theorem of the paper. It states that the coproduct AYW:B
is actually compatible with the filtration given in Definition 1.2:

Theorem 1.3. For any m € Z, we have
AVB(FTWERY ¢ FMWE @ WE).
Definition 1.4 ([Yadl, §2.1.1]). Let VIR be the graded k-algebra! generated by {ep,e1} LU uy
where eg and e; are of degree 1 and elements ( € uy are of degree 0 satisfying the relations:
(i) ¢-n=Cn; (i) Typr = 1; (iii) ¢-eo =eo-¢;

(1))

for any (,n € un; where is the algebra multiplication?.

Recall from [Yadl, §2.1.1] the subalgebra
WRE ==k @ VRRe;

of VOR. It is a graded algebra freely generated by ([Yadl, Proposition 2.6(ii)])

Z = {zpc = —egflgel | (n,C) € Zso X un},
where for any (n,() € Zso x iy the element z, ¢ is of degree n. Moreover, WJI\),R is equipped with
a Hopf algebra structure with respect to the harmonic coproduct, which is the algebra morphism
A%V’DR : WRR — WDIR @ WOR given by ([Yadl, Proposition 2.11(i)])

n—1
A}/VV’DR(zn,C) =2n¢ @1 +1® 2z + Z 2 @ Zn_k.cp-1-

k=1
NeEUN

Let gr(VS) be the associated graded algebra of V¥ for the py-filtration (F™VR)cz. Form € Z
and v € F™VE, denote by [v],, the image in F™VE /F™ VR of the element v.
Proposition 1.5 ([Yad, Theorem 3.1.6] and [Yad, Proposition 3.1.12]).
(a) There exists a graded algebra isomorphism p% : V]]\D]R — gr(V]]\g,) uniquely defined by
CN — [Xo}o, ep — [Xév — 1]1, e] — [Xl — 1]1.

Lin [Yad1, §2.1.1] this corresponds to Vg for G = pn.
2which we will omit if there is no risk of ambiguity.
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(b) The graded algebra isomorphism p}{, : VBR — gr(V]]?,) restricts to a graded algebra isomor-
phism pXY : WOR — gr(WE).

By Theorem 1.3, the filtered algebra morphism AYW:B : W]]?, — W]]\Bf ® WE, induces the graded
algebra morphism

gr(AP) : gr(WR) — gr(VR) @ grOVR).
The following result is the second main theorem of the paper. It states that the associated
graded algebra morphism gr(A"Y:B) is in fact the graded algebra morphism A?’DR.

Theorem 1.6. The following diagram

AW,DR

WRR WRR @ Wik
(2) szvvl ip}y@p}(fv
r(AW-B
er(WB) 27T o (WB) @ gr(WP)

commutes.

Finally, regarding the topological algebra morphism B}/VV’B given in (1), Theorems 1.3 and 1.6
motivate the following problem:

Problem 1.7. For suitable a,b € Z, show that the topological algebra morphism ALV,B s the
completion (w.r.t. the filtration (F"WX)mez) of the algebra morphism Adxlaylb o AW:B,

2. COMPATIBILITY OF AW:B WITH THE FILTRATION (F™VR),.cz

In this section, we prove Theorem 1.3. To do so, we will start with some preparatory results.
Lemma 2.1. For m € Z~q, we have

(a) F"WR = F"VR NVR (X1 — 1). (b) FrWy = Fr1VR(X) —1).

(c) F"WE is a left VR -module.

Proof. For (a) and (b), see [Yad2, Lemma 3.1.14]. (c) follows immediately from (b). O
Lemma 2.2. For m € Z, we have
WJ% ifm <0
VE(X1—1) ifm=1

FWE = m—1
(X0 = 1) 'K[Xo, Xg (X1 = 1)+ > FWR - FTEPWR ifm > 2

k=1
Proof. The result is immediate for m = 0; and for m = 1, it follows from Lemma 2.1 (b).
We now consider the case m > 2. Since (F "W]%)nez is a decreasing algebra filtration, then

m—1
(3) FMWE D Y FPWE - FrRWR.
k=1

On the other hand, since Xév — 1 and X7 — 1 belong to Zy, we obtain the inclusion in the
following

(4) FmWE = F"VR NV (X1 — 1) D (XF — 1) k[ X0, X5 (X1 — 1),
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and the equality follows from Lemma 2.1 (a). From (3) and (4), we obtain the following inclusion

m—1
FMWR O (XY = )™ k[ X, Xg (X1 — 1)+ ) FEWR - PR WL
k=1

Let us now prove the converse. The group morphism F, — Z given by Xy — 1 and X; — 0
admits a section given by 1 — Xy. Then kF5 is the direct sum of the image of the section
kZ — kF», which is k[Xg, X, 1], and of the kernel of kFy — kZ, which is the two-sided ideal of
kF; generated by X; — 1. Let us denote by V]]\B, (X; — 1)V]]\3, this ideal®.

We derive the direct sum decomposition*

Vi =k[Xo, X, '@ VR (X1 — 1)VE.
Moreover, since V3 (X1 — 1)VE € Zy = ker(kFy — kuy), we have
In = ker (k[Xo, Xo '] = kun) @ V(X1 — 1)VE,
where k[Xo, X, '] — kuy is the restriction of kFy — kuy to k[Xp, X !]. Therefore,
(5) Iy = (X§ — Dk[Xo, X5 '] @ VR (X1 — 1)VR.

Denote by Ag = (X' — 1)k[Xo, X; '] and A; = VE(X1 — 1)VE. Thanks to (5), we obtain

6) In'= > Ay A1) = AFT + > Ay A,
AlLm—1]-{0,1} Al1m—1]-{0,1}
A0

where 0 : [1,m — 1] — {0, 1} is the zero map.
Set X (0) := X' and X (1) := X;. Since A; C VR(X (i) — 1)VE (for i € {0,1}), it follows that
for any map A : [1,m — 1] — {0,1}, we have

(7) Ay - Anme1) C VN(X(AL)) = VR - VR(X (A(m — 1)) — )V

Combining equality (6), inclusion (7) for A # 0, and the equality A7~! = (X§ —1)™"1k[Xo, X, '],
we obtain

Iyt C(X(O)-1D)" kX0, Xg T+ Y VRXAL)-DVE - VR(X(A(m—1)) 1)V}
A:[1,m—1]—{0,1}
A#£0

Since X (i) — 1 € Zy (for i € {0,1}), the right hand side of this inclusion is contained in Zy !,
therefore
(8)
Iy~ = (X(O0)-)" kX0, Xg ']+ D VREXAD)=LVE - VR(X (A(m—1)=1)VR.
A[1m—1]—{0,1}
A0

3recall that the algebras VE and kF; are equal. In the sequel, we use the former rather that the latter notation
for denoting the two-sided ideal generated by X; — 1.
4where the first summand is a subalgebra of and the second summand is a two-sided ideal
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Finally,
FrWR =T (X (1) - 1)
=(X(0) = )™ "k[Xo, X5 (X (1) = 1)
+ > VR(X(A(1) = 1) - VR(X(A(m - 1)) = )VR(X (1) = 1)
MLm1l5{01)
=(X(0) = )™ "k[Xo, X5 (X (1) — 1)

+ ) VRIX (A1) = 1) - VR(X(A(m = 1) = HDVR(X(A(m)) — 1)
AEAm

—(X(0) — 1)™ K[ X0, X |(X(1) — 1)
+30S R (0) - ) TIVRX (1) - 1) (VR (X (0) - 1)

922 (ky .. k)RS

o—k1—1

VB(X(1) = 1)--- (VB(X(0) — 1)) " T vB(x (1) - 1)
C(X(0) — 1)™ K [Xo, X5 (X (1) — 1)

k1B . Tha—ki1yyB kj—k;i—13\)B
+Z Z Fraws . pra=kiyB L phi—ki-npB
22 (ky,.. iy )X

m—1
C(X(0) = )™ k[ X0, Xo (X (1) = 1) + Y F*WiR - FWR,
k=1

where the first equality follows from Lemma 2.1 (b) and the second one from (8). In the third
equality one denotes

Am = {)\ : [[1,m]] — {0, 1} | )\(m) = 1, )‘|[1,m71]] 7é 0}
and the equality then follows immediately. In the fourth equality one denotes
IC%) = {(/ﬁ,...,kj) ‘ 1<k < <I€j_1 <kj :m},

one also uses Convention* for the definition of (VE(X(0) — 1))k (for any integer k£ > 1); and
the equality is induced by the bijection

Am | | KD, X A71({0}).

Jj=2

The first inclusion follows from the fact (VR(X(0) — 1))*1VB(X(1) — 1) € F*WE (for any
integer k > 1); and the last inclusion from the fact that (F mW]%)mez is a decreasing filtration
and therefore

FhazkpB Fri=ki-B o pri—kyB — Fm-kipB

Lemma 2.3. For any integer m > 2, we have

AWEB (XN — 1) KXo, X (X1 — 1)) € FOWE @ WE)
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Proof. Let P(Xo, X, ") € k[Xo, X, ']. We have
(9) AWEB((Xy = 1)™ 1 P(Xo, X5 1) (X1 — 1))
= (Xg' = D)™ P(Xo, Xg (X1 = 1) + (Y = )™ P(Yp, Yy (Y — 1)
XV 1) 1p( X, X7 DY — (YN — 1™ LP(Y, Yo H X,
_( 0 ) ( 0 0))(2_(Yb0 ) (0 0 ) 0(X1—1)(Y1—1>,

N_1ym—1 -1 _ N_q1ym—1 -1
where o =D P(Xo.X, );g,go D™ PO0.Y, )Xo o the polynomial F(Xo, X, Y0, Yy !) €

k[Xo, X', Yo, Yy ] such that
(Xo = Yo)F(Xo, X5 1, Y0, Y5 1) = (X¢' = 1) ' P(Xo, X5 1) Yo — (YgY — )™ ' P(Y, Y5 ) Xo.
Next, we have
(Xg" = 1)1 P(Xo, Xy Yo — (Vg — )™ L P(Y, Yy D) Xo
Xo—Yo
(X — 1)1 P(Xo, X5 1) Xo — (V3" = )™ TP (Y0, Y)Y
Xo— Yo

= —(X3' =)™ P(Xo0, X 1)

— (Y =)™ P(Yo, Yy ) +

= —(X¢' = )™ 'P(Xo, Xy ) — (Y = 1) P(Y0, YY)
(X — 1) Y(P(Xo, Xy )Xo — P(Yo, Yy 1)Yo) N (XY —1)m=t — (Y — 1)) P(Y,, Yy MY

* Xo Yo Xo Yo

Denote by
A(Xo, Xg 1 Y0, Y5 1) = = (X0 = )™ P(Xo, X ) — (Y5 — 1) P(Y0, Y ),

(X = 1) (P(Xo, X5 1) Xo — P(Yo, Yy H)Yo)

B(Xo, XL Yo, Y =
( 0,29 »10,1% ) XO_YO ;

(" =)™t = (%Y = )™ P(Yo, Yy )Yy
Xo — Yo .
Thanks to this, we obtain from equality (9) the following identity

(10) AVB((Xg = 1) P(Xo, Xo 1)(X1 = 1)) = (X3 = )™ P(Xo, X ) (X1 — 1)
+ (Y5 = )™ P(Yo, Yo (Y1 = 1) = A(Xo, X Yo, Y (X = 1)(Y1 - 1)
— B(Xo, X 1, Y0, Y5 (X1 = (Y1 = 1) = O(Xo, X ', Y0, Y5 (X1 = 1)(Vi - 1).
Since X(])V —1,X1 — 1€ Iy, we have
(11) (X = 1) P(Xo, Xg (X1 — 1) € F™VE nWB = FrwWR,
Then the statement (11) implies that
(XY 1) IP(Xo, Xg (X1 — 1) € F*WE ® 1 € FP"(WE @ WR),

C(Xo, X5 1, Yo, Yy 1) i=

e Y& — 1) P(Yo, Yy (Y1 — 1) € 1@ F"WE € F(WR @ WE).

On the other hand, we have

(12)  A(Xo, Xo ', Yo, Yp (X1 = 1D)(Y1 = 1) = —P(Xo, X )Xy = 1) 1 (X1 = 1)(Y1 - 1)
— P(Yo, Yy (Y = D)™ (Vi - 1)(X1 - 1)
e F"HH(WR @ WR),
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where the “€” claim follows from the fact that (Xév —Dm X 1) (Y1 -1) € ]:mWJ]% ® FlyyB
and that F™WE @ FIWB is a left (VR ® VE)-module, which implies
—P(Xo, Xg (X —1)™ N X, - 1) (Y1 — 1) € F"WE @ FIWE,
Swapping between X and Y enables us to apply the same argument to show that
—P(Yo, Yy (Y = )" (- 1)(X1 — 1) € WP @ FUWRL
Moreover, we have
(13) B(Xo, X, Yo, Yy (X1 = 1)(Y1 - 1)
_ P(X0,Xg )Xo — P(Yo, Y5 Yo
Xo—-Y)
€ F"Wx @ FIWR ¢ F"HH(WR @ WR) ,
where the “€” claim follows from the fact that (X" —1)""}(X; —1)(Y; — 1) € F"WR @ F1wB

and that F™WE @ FIWB is a left (V¥ ® V¥)-module.
Moreover, we have

(14)  C(Xo, X5, Yo, Yo b ) (X — 1)(Y; — 1)
X Y (X - - (Y -yt
Xo—Yo Xp' -5

N-1 m—2
= P(Yo, Y5 )Y (Z Xc’fYJV_l_k> Yo DX - (Y )" (v - 1)

k=0 =0

(XY -Dm X - )Y - 1)

= P(Yo, Y5 )Y (X1 -1 -1)

eFHIWE®1 el1@Fm-1-IWh
€ F™ (WS @ WR).
Therefore, it follows from identity (10) that
AWB((X{ —1)m P (X, X 1) (X1 — 1)) € FP(WE @ WER).
]

Proof of Theorem 1.8. If m < 0, the result is immediate. Let us assume that m > 1. We will
proceed with the proof by induction on m.
For m = 1, denote by ¢ : W]% — k the counit of the bialgebra (W]]?,, AYB), We have

AVB(FIWE) = AWB(ker(e)) C ker(e @ €) = FLWE @ WE),

where the first equality follows from the identity F'WE = ker(e); the second equality from
the counit identity AY'Boe = (¢ ® ) o AW'B; and the third equality from the identity
FLOWR @ W) =ker(e ® ¢).

Suppose now that the statement is true until m — 1. We have

m—1
AWB(FmMWR) = AWE <(ng — 1) K[ X0, X (X = 1)+ > FPWR- fW’“WJ%)
k=1

m—1
C AW (X = 1) KXo, XK1 — 1) + 30 AW (FIWE) - AP (Friwg)
k=1
m—1
CTF"WR®WR)+ > FHWR @WR) - F"FWE @ Wi)
k=1

c FPWE @ WR),
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where the equality follows from Lemma 2.2, the first inclusion follows by linearity of A¥:B and
compatibility with the product; the second inclusion from Lemma 2.3 and induction hypothesis;
and the last inclusion from the fact that (]:m(W]]\g, ® W]]\%))m ¢z, 18 an algebra filtration, which

follows from the fact that (F™WZY),,ecz is an algebra filtration. O

3. COMPUTATION OF gr(AY:B)

In this section, we prove Theorem 1.6.

Proof of Theorem 1.6. Let us prove that diagram (2) of graded algebra morphisms commutes
for any degree m > 1.
For a € [0, N — 1], zm g is a degree m element of WER and we have

(15) PN (Zmcs) = (X5 — D)™ XG (1 — X1
Recall that

W,DR
AN (zmea) = zmce @1+ 1@ zmes + Y gt O Zm_g ozt
1<k<m-—1
0<b<N-1

Therefore, we obtain

W,DR
(PN ®p) 0 Ay (2m,ce,)
= (X = )" XE (1 - X+ (0 - )Y - )
Y - DX - XY - )Y (- )
1<k<m—1 n

0<b<N-1

On the other hand, by taking P(Xo, X, ') = X¢ in (10), we obtain that

AWE (X" =)™ IXG (1= X)) = (X3 = D™ XG (1= X0) + (Y — D)"Y (1 - Y)
+ A(Xo, Yo)(1 = X1)(1 = Y1) + B(Xo, Yo) (1 = X1)(1 = V1) + C(Xo, Yo)(1 — X1)(1 = Y1),
where

AV(X0>YE]) = _(X(])V - 1)m_1Xg - (YE)N - 1)m_1YE)a7

. XCL+1 _ YCL+1
B(X,,Yy) :i= (XN —1ym-120___ -0
( 0, 0) ( 0 ) X[) — }/0 )

A (Xg —pm - g -t

C(Xo, Yp) := Y Y0a+1.

Thanks to (12), (13) and (14), it follows that
A(Xo,Yo)(1 = X))(1 = Y1) € FPOWE o Wh),

B(Xo,Yy)(1 — X1)(1 — Y1) € F*HHOWE @ WR),

C(Xo,Yo)(1 — X1)(1 - Y1) € F(WE @ WR).
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Therefore, thanks to equality (15), we obtain

gr(A"YP) o oY (Zm,ca )

= [ = "X (1= X0+ O = PTG = ) + (X, Yo) (1 - Xa)(1 - 1)

m
One checks that
_ m—1 N-1
C(Xo,Yb) _ Z (X(])V _ 1)k_1(YbN _ 1)m—k;—1 Z X(I))yvoNflfb YbaJrl
k=1 b=0
— Z (Xé\f _ 1)]’»‘71){8(}/0]\/' _ 1)m7k71}/0N+a—b'
1<k<m—1
0<b<N-—1
Finally,
gr(AP) 0 piY (2mcz,)
= (X = )X - X))+ 0 - DY (- )
+ Y (X =DM - X)) (Y - )Y (- )
1<k<m—1 m
0<b<N-—1
This concludes the proof. O
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