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A CATEGORICAL FORMULATION OF THE DELIGNE-TERASOMA

APPROACH TO DOUBLE SHUFFLE THEORY

BENJAMIN ENRIQUEZ AND KHALEF YADDADEN

Abstract. In this paper, we introduce the notion of a bimodule with a factorization structure
(BFS) and show that such a structure gives rise to an algebra morphism. We then prove that this
framework offers an interpretation of the geometric construction underlying both the Betti and
de Rham harmonic coproducts of the double shuffle theory developed in [DeT, EF1, EF2, EF3].
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Introduction

In [EF1], the first author and Furusho revisited the formalism of double shuffle relations among
multiple zeta values set up by Racinet [Rac]. There, they explained the “de Rham” nature of

Date: June 18, 2025.
2020 Mathematics Subject Classification. Primary 11M32, 16D20. Secondary 16W70, 20F36.
Key words and phrases. bimodules with factorization sturctures, multiple zeta values, double shuffle relations,

Betti and de Rham harmonic coproducts, braid groups and Lie algebras.

1

https://arxiv.org/abs/2506.15348v1


2 BENJAMIN ENRIQUEZ AND KHALEF YADDADEN

this formalism and constructed its “Betti” version, whose main objects are algebra “harmonic”
coproducts ∆W,DR and ∆W,B, respectively equipping the algebras WDR and WB with a Hopf
algebra structure. The algebras WDR and WB can be seen as subalgebras of respectively VB,
the group algebra of the free group with two generators and VDR, the enveloping algebra of
the free Lie algebra with two generators. The authors used this formalism to prove that the
associator relations between the multiple zeta values imply the double shuffle relations. This is
formulated as the inclusion of the torsor of associators in the double shuffle torsor [EF2]. To this
end, they constructed isomorphisms relating the Betti and de Rham sides and showed that any
associator relates the algebra coproducts ∆W,DR and ∆W,B ([EF1, Theorem 10.9]). Rather than
relying on Bar constructions as in [Fur], this alternative proof builds upon an interpretation
of the harmonic coproducts in terms of infinitesimal braid Lie algebras for the de Rham side
and braid groups for the Betti side, which is implicit in the unpublished work of Deligne and
Terasoma [DeT].

The purpose of this paper is to formulate this construction of the harmonic coproducts in a
categorical framework, which will be used in a later paper [EY2] for the geometric interpretation
of the cyclotomic version of the Betti and de Rham coproducts introduced by the second author
in [Yad]. To this end, we define the category BFS of bimodules with factorization structures whose
objects are tuples (A,B,M, ρ, e, r, c) such that (A,B,M, ρ) is a bimodule (i.e. M is a right
A-module equipped with a compatible left B-action ρ) and (e, r, c) satisfies the factorization
identity (see Definition 2.1.1)

ρ(e) = c ◦ r.
We then construct a functor BFS → Mor(alg) which associates to any object (A,B,M, ρ, e, r, c)
of BFS, an algebra morphism given by (see Proposition-Definition 2.3.2)

(0.1) B ∋ b 7→ r ◦ ρ(b) ◦ c(1A) ∈ A.

On the other hand, we also define categories BFSfil and BFSgr of respectively filtered and graded
objects of BFS as well as a functor BFSfil → BFSgr which is induced by associated graded objects.
This enables the construction of functors BFSfil → Mor(algfil) and BFSgr → Mor(alggr) fitting in
the following diagram

(0.2)

BFS BFSfil BFSgr

Mor(alg) Mor(algfil) Mor(alggr)

Sec. 2.3.1

(2.5) Sec. 2.2

Sec. 2.3.2 Sec. 2.3.3

(2.8) (2.7)

Each of the squares gives rise to two functors, and one checks that there are natural equivalences
relating them.

The Betti and de Rham formalism of [EF1] can be interpreted within this framework through
the objects (see Proposition-Definitions 4.7.1 and 4.7.3)

OB := (VB ⊗VB,VB,MB, ρB, eB, rB, cB) ∈ BFS,

and

ODR := (VDR ⊗VDR,VDR,MDR, ρDR, eDR, rDR, cDR) ∈ BFSgr.

A suitable filtration on the objectOB enables us to show that it gives rise to an objectOB
fil ∈ BFSfil

(see Corollary 4.7.2). Thanks to the functor BFSfil → BFSgr these objects are related by the
following:

Theorem I (Theorem 4.6.4). We have gr(OB
fil) = ODR.

The bimodule parts of these objects arise from geometric constructions, but their factoriza-
tion structures (eB, rB, cB) and (eDR, rDR, cDR) require the use of explicit objects of the BFS
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categories arising from representations of the algebras VB and VDR, namely (see Corollaries
3.1.4 and 3.4.5)

OB
mat := (VB ⊗VB,VB, (VB ⊗VB)⊕3, rρ, eB, rrow, rcol) ∈ BFS,

and

ODR
mat := (VDR ⊗VDR,VDR, (VDR ⊗VDR)⊕3, rρ, eDR, rrow, rcol) ∈ BFSgr.

The prefix “r” signifies that the constructed objects differ from the objects with the same
notation from [EF1] by the fact that we consider right actions instead of left actions. Then,
once again, a suitable filtration on the object OB

mat enables us to show that it gives rise to an
object OB

mat,fil ∈ BFSfil (see Corollary 3.3.4).

We show that the geometric objects OB
fil and ODR and the explicit objects OB

mat,fil and ODR
mat are

respectively related thanks to bimodule isomorphisms:

Theorem II (Theorems 4.3.4 and 4.5.4). We have

MB ≃ (VB ⊗VB)⊕3 and MDR ≃ (VDR ⊗VDR)⊕3.

Finally, the explicit BFS objects enables the use of the functor BFS → Mor(alg) to construct
coproducts ∆OB

mat
and ∆ODR

mat
, as described in (0.1); then we identify them with the coproducts

∆W,B and ∆W,DR thanks to the following result:

Theorem III (Theorems 3.2.1 and 3.5.1). For b in VB (resp. VDR), we have

∆OB
mat,fil

(b) = ∆W,B(b eB) (resp. ∆ODR
mat

(b) = ∆W,DR(b eDR)).

Acknowledgments. This project was partially supported by first author’s ANR grant Project
HighAGT ANR20-CE40-0016 and second author’s JSPS KAKENHI Grant 23KF0230.

Notation. Throughout this paper, let k be a commutative Q-algebra.

1. Basic categories of filtered and graded algebras and modules

We introduce here the basic categories and functors relating them that we shall refer to
throughout this paper.

1.1. The categories k-mod, k-modfil and k-modgr.

Definition 1.1.1. (a) k-mod is the category of k-modules;

(b) k-modfil is the category of filtered k-modules, that is, k-modules M equipped with a de-
creasing sequence of k-submodules (FnM)n∈Z called filtration. Morphisms are filtered
k-module morphisms, that is, k-module morphisms φ : M → M′ which are compatible
with the filtrations on both sides. We denote by Fnφ : FnM → FnM′ the induced
k-module morphism corresponding to n ∈ Z;

(c) k-modgr is the category of Z-graded k-modules, that is, k-module for which there exists a
sequence of k-submodules (Mn)n∈Z, called grading, such that M =

⊕
n∈ZMn. Morphisms

are graded k-module morphisms, that is, k-module morphisms φ : M → M′ such that
φ(Mn) ⊂ M′

n for any n ∈ Z. We denote by φn : Mn → M′
n the induced k-module

morphism corresponding to n ∈ Z.

Recall that there is an associated graded functor gr : k-modfil → k-modgr which takes a filtered
k-module (M, (FnM)n∈Z) to the graded k-module gr(M) :=

⊕
n∈Z grn(M), where grn(M) :=

FnM/Fn+1M for any n ∈ Z. Denote by x 7→ [x]n the canonical projection FnM ↠ grnM for
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any n ∈ Z. At the level of morphisms, one assigns to a filtered k-module morphism φ : M → M′,
the graded k-module morphism gr(φ) : gr(M) → gr(M′) induced by the commutative diagram

FnM FnM′

grn(M) grn(M
′)

Fnφ

for any n ∈ Z (see for example [Bbk, Chap. III, Sec. 2, no. 3 and no. 4]).

1.2. The categories k-alg, k-algfil and k-alggr.

Definition 1.2.1. (a) k-alg is the category of k-algebras (with unit);

(b) k-algfil is the category of filtered k-algebras, that is, k-algebras (A, ·) equipped with a
k-module filtration (FnA)n∈Z that satisfies FkA ·FnA ⊂ Fk+nA, for any k, n ∈ Z and
1 ∈ F0A. Morphisms are filtered k-algebra morphisms, that is, k-algebra morphisms which
are also filtered k-module morphisms;

(c) k-alggr is the category of Z-graded k-algebras, that is, k-algebras (A, ·) equipped with a
k-module grading (An)n∈Z that satisfies Ak · An ⊂ Ak+n for any k, n ∈ Z and 1 ∈ A0.
Morphisms are graded k-algebra morphisms, that is, k-algebra morphisms which are also
graded k-module morphisms.

One immediately checks that if A is an object of k-algfil, then gr(A) is an object of k-alggr.
Moreover, for a filtered k-algebra morphism φ : A → A′, the map gr(φ) : gr(A) → gr(A′) is a
graded k-algebra morphism (see for example [Bbk, Chap. III, Sec. 2, no. 3 and no. 4]). One
then defines a functor k-algfil → k-alggr, which we also denote gr, such that we have a natural
equivalence that we summarize in the following diagram

k-algfil k-modfil

k-alggr k-modgr

gr gr

where the horizontal arrows are forgetful functors.

1.3. The categories A-rmod, A-rmodfil and A-rmodgr.

Definition 1.3.1. (a) For A ∈ k-alg, denote by A-rmod the category of right A-modules. In
particular, one has A ∈ A-rmod.

(b) For A ∈ k-algfil, denote by A-rmodfil the category of filtered right modules over the filtered
algebra A, that is, right A-modules M which are equipped with a k-module filtration
(FnM)n∈Z that satisfies FkM ·FnA ⊂ Fk+nM for any k, n ∈ Z. Morphisms are filtered
right A-module morphisms. In particular, one has A ∈ A-rmodfil;

(c) For A ∈ k-alggr, denote byA-rmodgr the category of graded right modules over the graded al-
gebra A, that is, right A-modules M which are equipped with a k-module grading (Mn)n∈Z
that satisfies Mk · An ⊂ Mk+n for any k, n ∈ Z. Morphisms are graded right A-module
morphisms. In particular, one has A ∈ A-rmodgr.

Let A be an object of k-algfil. One immediately checks that if M is an object of A-rmodfil,
then gr(M) is an object of gr(A)-rmodgr, the structure maps of which arise from the vertical
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cokernels of the collection of commutative diagrams

FkM⊗Fn+1A+Fk+1M⊗FnA Fk+n+1M

FkM⊗FnA Fk+nM

indexed by k, n ∈ Z. Moreover, if φ : M → M′ is a morphism of A-rmodfil, then the map
gr(φ) : gr(M) → gr(M′) is a morphism of gr(A)-rmodgr.
This defines a functor gr : A-rmodfil → gr(A)-rmodgr.

2. The bimodule with factorization structure categories

In this section, we introduce bimodules with factorization structures (BFS), a central concept
for our framework (Definition 2.1.1). We further define their filtered and graded counterparts,
extending the construction to settings where the underlying algebraic structures are equipped
with filtrations or gradings (Definitions 2.1.9 and 2.1.18). We show that any BFS gives rise to an
algebra morphism (Proposition-Definition 2.3.2). From this, it will follow that a filtered (resp.
graded) BFS yields a filtered (resp. graded) algebra morphism (Corollary 2.3.6, resp. Corollary
2.3.8).

2.1. The categories k-BFS, k-BFSfil and k-BFSgr.

2.1.1. The category k-BFS.

Definition 2.1.1. (a) A k-bimodule is a tuple (A,B,M, ρ) where A,B are objects of k-alg, M
is an object of A-rmod and ρ : B → EndA-rmod(M) is a morphism of k-alg. The k-module
M is said to have a (B,A)-bimodule structure.

(b) A factorization structure on a k-bimodule (A,B,M, ρ) is a triple (e, r, c) where e ∈ B,
r ∈ MorA-rmod(M,A) and c ∈ MorA-rmod(A,M) such that (equality in EndA-rmod(M))

ρ(e) = c ◦ r.
(c) A k-bimodule with factorization structure is a tuple (A,B,M, ρ, e, r, c) such that (A,B,M, ρ)

is a k-bimodule and (e, r, c) is a factorization structure on it.

Definition 2.1.2. Let (A,B,M, ρ) and (A′,B′,M′, ρ′) be two k-bimodules.

(a) A k-bimodule morphism between (A,B,M, ρ) and (A′,B′,M′, ρ′) is a triple (f , g,φ) where
f : A → A′ and g : B → B′ are morphisms of k-alg and φ : M → M′ a morphism of
k-mod such that:

(i) For a ∈ A and m ∈ M,

φ(m · a) = φ(m) · f(a);
(ii) For b ∈ B and m ∈ M

φ(ρ(b)(m)) = ρ′(g(b))(φ(m)).

(b) If (e, r, c) and (e′, r′, c′) are factorization structures on (A,B,M, ρ) and (A′,B′,M′, ρ′)
respectively, then a k-bimodule morphism (f , g,φ) : (A,B,M, ρ) → (A′,B′,M′, ρ′) is said
to be compatible with the factorization structures if:

(i) g(e) = e′;
(ii) f ◦ r = r′ ◦φ (equality in MorA-rmod(M,A′));
(iii) c′ ◦ f = φ ◦ c (equality in MorA-rmod(A,M

′)).

Proposition-Definition 2.1.3. A category k-BFS can be defined such that objects are k-
bimodules with factorization structures and morphisms are k-bimodule morphisms compatible
with factorization structures.
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Proof. Immediate. □

In the subsequent sections, we shall make use of the following general properties:

Proposition 2.1.4. Let (A,B,M, ρ) and (B′,A,M′, ρ′) be two k-bimodules. Then the tuple

(B′,B,M⊗A M′, ρ⊗)

is a k-bimodule, where ρ⊗ : B → EndB′-rmod(M⊗A M′) is the k-algebra morphism given by

b 7→ ρ(b)⊗ idM′ .

Proof. Immediate verification. □

Proposition 2.1.5. Let A,B ∈ k-alg and φ : B → A be a surjective morphism of k-alg. Let
M be a (B,B)-bimodule. We have

(a) The k-module M
/
M · ker(φ) is a (B,A)-bimodule;

(b) There is a (B,A)-bimodule isomorphism

M⊗B A ≃ M
/
M · ker(φ).

Proof. (a) The k-module morphism M⊗B → M given by

m⊗ b 7→ m · b, for m ∈ M and b ∈ B,

takes the k-submodule M ⊗ ker(φ) + M · ker(φ) ⊗ B of its source to the k-submodule
M · ker(φ) of its target. This results in a commutative diagram

M⊗ ker(φ) +M · ker(φ)⊗B M · ker(φ)

M⊗B M

whose vertical cokernel is a k-module morphism

M
/
M · ker(φ)⊗A → M

/
M · ker(φ),

thus giving the right A-module structure of M
/
M · ker(φ). The left B-module structure

follows from that of M and of M · ker(φ).
(b) By assumption, the morphism φ gives rise to the following exact sequence of left B-modules

ker(φ) → B
φ−→ A → {0}.

Applying the right exact functor M ⊗B − we obtain the following exact sequence of left
B-modules

M⊗B ker(φ) → M⊗B B
idM⊗φ−−−−→ M⊗B A → {0}.

One derives the following left B-module isomorphism

(2.1) M⊗B A ≃ coker
(
M⊗B ker(φ) → M⊗B B

)
.

On the other hand, consider the left B-module morphism M ⊗ ker(φ) → M given by
m⊗ k 7→ m · k. One checks that

(2.2) coker(M⊗ ker(φ) → M) = M
/
M · ker(φ).

Next, we have the following commutative diagram of left B-module morphisms

M⊗ ker(φ) M

M⊗B ker(φ) M⊗B B

≃
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Taking the horizontal cokernels we have an isomorphism

(2.3) coker(M⊗ ker(φ) → M) ≃ coker(M⊗ ker(φ) → M⊗B B).

We obtain the following chain of left B-module isomorphisms

(2.4) M⊗B A ≃
(2.1)

coker
(
M⊗B ker(φ) → M⊗B B

)
≃

(2.3)
coker(M⊗ ker(φ) → M) =

(2.2)
M

/
M · ker(φ).

It remains to prove that it is in fact a right A-module morphism. Indeed, for m ∈ M,
a ∈ A, and b ∈ B such that φ(b) = a, recall the right A-module structure on M ⊗B A
given by

(m⊗ 1) · a = mb⊗ 1,

and the right A-module structure on M
/
M · ker(φ) given by(

m+M · ker(φ)
)
· a = m b+M · ker(φ),

thanks to (a). Finally, one checks that the image of mb ⊗ 1 ∈ M ⊗B A by the morphism
(2.4) is given by m b+M · ker(φ) ∈ M

/
M · ker(φ). This completes the proof.

□

Proposition 2.1.6. Let (A,B,M, ρ, e, r, c) be an object of k-BFS and (A′,B′,M′, ρ′) be a
k-bimodule. Assume that there exists a k-bimodule isomorphism

(f , g,φ) : (A,B,M, ρ) → (A′,B′,M′, ρ′).

Set e′ := g(e) ∈ B′, r′ := f ◦ r ◦ φ−1 ∈ MorA′-rmod(M
′,A′) and c′ := φ ◦ c ◦ f−1 ∈

MorA′-rmod(A
′,M′). Then, the tuple

(A′,B′,M′, ρ′, e′, r′, c′)

is an object of k-BFS.

Proof. We have

ρ′(e′) = ρ′(g(e)) = φ ◦ ρ(e) ◦φ−1 = φ ◦ c ◦ r ◦φ−1 = φ ◦ c ◦ f−1 ◦ f ◦ r ◦φ−1 = c′ ◦ r′,
where the second equality follows from Definition 2.1.2 (a) and the third one from the equality
ρ(e) = c ◦ r. □

2.1.2. The category k-BFSfil.

Definition 2.1.7. Let A ∈ k-algfil and M and M′ ∈ A-rmodfil. For n ∈ Z, define
FnMorA-rmod(M,M′) to be the set of right A-module morphisms φ : M → M′ such that
φ(FkM) ⊂ Fk+nM′ for any k ∈ Z.

Lemma 2.1.8. Let A ∈ k-algfil and M and M′ ∈ A-rmodfil. The sequence of right
A-modules (FnMorA-rmod(M,M′))n∈Z is decreasing and compatible with composition, that is,

for φ ∈ FnMorA-rmod(M,M′) and φ′ ∈ Fn′
MorA-rmod(M

′,M′′), we have

φ′ ◦φ ∈ Fn+n′
MorA-rmod(M,M′′).

In particular, the k-module EndA-rmod(M) equipped with the filtration (FnEndA-rmod(M))n∈Z is
an object of k-algfil.

Proof. Immediate. □

Thanks to Lemma 2.1.8, we may define the following:

Definition 2.1.9. (a) A filtered k-bimodule is a k-bimodule (A,B,M, ρ) such that A and B
are objects of k-algfil, M is an object of A-rmodfil and ρ : B → EndA-rmod(M) is a morphism
of k-algfil.
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(b) A filtered factorization structure on a filtered k-bimodule (A,B,M, ρ) is a factorization
structure (e, r, c) on the k-bimodule (A,B,M, ρ) such that

e ∈ F1B, r ∈ F0MorA-rmod(M,A) and c ∈ F1MorA-rmod(A,M).

(c) A filtered k-bimodule with factorization structure is a filtered k-bimodule equipped with a
filtered factorization structure.

Remark 2.1.10. For a filtered factorization structure (e, r, c) on a filtered k-bimodule (A,B,M, ρ),
the identity ρ(e) = c ◦ r is an equality in F1EndA-rmod(M).

Lemma 2.1.11. If A is an object of k-algfil and M an object of A-rmodfil, then the filtered
k-modules MorA-rmod(A,M) and M are isomorphic.

Proof. The maps

MorA-rmod(A,M) → M, ϕ 7→ ϕ(1) and M → MorA-rmod(A,M), m 7→ (a 7→ ma)

are compatible with the filtrations, and are inverse isomorphisms. □

Definition 2.1.12. A filtered k-bimodule morphism compatible with factorization structures is
a morphism (f , g,φ) : (A,B,M, ρ, e, r, c) → (A′,B′,M′, ρ′, e′, r′, c′) of k-BFS such that f , g
are morphisms of k-algfil and φ is a morphism of k-modfil.

Lemma 2.1.13. A category k-BFSfil can be defined such that objects are filtered k-bimodules
with factorization structures and morphisms are filtered k-bimodule morphisms compatible with
factorization structures.

Proof. Immediate. □

Remark 2.1.14. The forgetful functors k-modfil → k-mod and k-algfil → k-alg induce a functor

(2.5) k-BFSfil → k-BFS.

In the subsequent sections, we shall make use of the following pullback property:

Proposition 2.1.15. Let (A,B,M, ρ, e, r, c) be an object of k-BFSfil and (A′,B′,M′, ρ′) be a
filtered k-bimodule. Assume that there exists a filtered k-bimodule isomorphism

(f , g,φ) : (A,B,M, ρ) → (A′,B′,M′, ρ′).

Set e′ := g(e) ∈ B′, r′ := f ◦ r ◦ φ−1 ∈ MorA′-rmod(M
′,A′) and c′ := φ ◦ c ◦ f−1 ∈

MorA′-rmod(A
′,M′). Then, the tuple

(A′,B′,M′, ρ′, e′, r′, c′)

is an object of k-BFSfil.

Proof. Recall from Proposition 2.1.6 that the tuple (A′,B′,M′, ρ′, e′, r′, c′) is an object of k-BFS.
Moreover, since e ∈ F1B (resp. r ∈ F0MorA-rmod(M,A) and c ∈ F1MorA-rmod(A,M))
and g : B → B′ (resp φ : M → M′ and f : A → A′) preserve filtrations, it follows that
e′ = g(e) ∈ F1B′ (resp. r′ = f ◦ r ◦ φ−1 ∈ F0MorA′-rmod(M

′,A′) and c′ = φ ◦ c ◦ f−1 ∈
F1MorA′-rmod(A

′,M′)). □

2.1.3. The category k-BFSgr.

Definition 2.1.16. Let A ∈ k-alggr and M and M′ ∈ A-rmodgr. For n ∈ Z, define
MorA-rmod(M,M′)n the set of right A-module morphisms φ : M → M′ such that
φ(Mk) ⊂ M′

k+n for any k ∈ Z.
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Lemma 2.1.17. Let A ∈ k-alggr and M and M′ ∈ A-rmodgr. The sequence of right
A-modules (MorA-rmod(M,M′)n)n∈Z defines a grading on MorA-rmod(M,M′) and is
compatible with composition, that is, for φ ∈ MorA-rmod(M,M′)n and φ′ ∈ MorA-rmod(M

′,M′′)n′,
we have

φ′ ◦φ ∈ MorA-rmod(M,M′′)n+n′ .

In particular, the k-module EndA-rmod(M) equipped with the grading (EndA-rmod(M)n)n∈Z is an
object of k-alggr.

Proof. Immediate. □

Thanks to Lemma 2.1.17, we may define the following:

Definition 2.1.18. (a) A graded k-bimodule is a k-bimodule (A,B,M, ρ) such that A,B are
objects of k-alggr, M is an object of A-rmodgr and ρ : B → EndA-rmod(M) is a morphism
of k-alggr.

(b) A graded factorization structure on a graded k-bimodule (A,B,M, ρ) is a factorization
structure (e, r, c) on the k-bimodule (A,B,M, ρ) such that

e ∈ B1, r ∈ MorA-rmod(M,A)0 and c ∈ MorA-rmod(A,M)1.

(c) A graded k-bimodule with factorization structure is a graded k-bimodule equipped with a
graded factorization structure.

Remark 2.1.19. For a graded factorization structure (e, r, c) on a graded k-bimodule (A,B,M, ρ),
the identity ρ(e) = c ◦ r is an equality in EndA-rmod(M)1.

Definition 2.1.20. A graded k-bimodule morphism compatible with factorization structures is
a morphism (f , g,φ) : (A,B,M, ρ, e, r, c) → (A′,B′,M′, ρ′, e′, r′, c′) of k-BFS such that f , g
are morphisms of k-alggr and φ is a morphism of k-modgr.

Lemma 2.1.21. A category k-BFSgr can be defined such that objects are graded k-bimodules
with factorization structures and morphisms are graded k-bimodule morphisms compatible with
factorization structures.

Proof. Immediate. □

In the subsequent sections, we shall make use of the following pullback property:

Proposition 2.1.22. Let (A,B,M, ρ, e, r, c) be an object of k-BFSgr and (A′,B′,M′, ρ′) be a
graded k-bimodule. Assume that there exists a graded k-bimodule isomorphism

(f , g,φ) : (A,B,M, ρ) → (A′,B′,M′, ρ′).

Set e′ := g(e) ∈ B′, r′ := f ◦ r ◦ φ−1 ∈ MorA′-rmod(M
′,A′) and c′ := φ ◦ c ◦ f−1 ∈

MorA′-rmod(A
′,M′). Then, the tuple

(A′,B′,M′, ρ′, e′, r′, c′)

is an object of k-BFSgr.

Proof. Recall from Proposition 2.1.6 that the tuple (A′,B′,M′, ρ′, e′, r′, c′) is an object of k-BFS.
Moreover, since e ∈ B1 (resp. r ∈ MorA-rmod(M,A)0 and c ∈ MorA-rmod(A,M)0) and g : B →
B′ (resp φ : M → M′ and f : A → A′) preserve gradings, it follows that e′ = g(e) ∈ B′

1 (resp.
r′ = f ◦ r ◦φ−1 ∈ MorA′-rmod(M

′,A′)0 and c′ = φ ◦ c ◦ f−1 ∈ MorA′-rmod(A
′,M′)0). □
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2.2. The functor k-BFSfil → k-BFSgr. Let A be an object of k-algfil and M and M′ be two
objects of A-rmodfil. Let n ∈ Z. Thanks to definition 2.1.7, we have the following k-module
morphism

FnMorA-rmod(M,M′)⊗FkM → Fn+kM′

for any k ∈ Z. One immediately checks that it induces a k-module morphism

grn
(
MorA-rmod(M,M′)

)
⊗ grk(M) → grn+k(M

′)

and then the k-module morphism

grn
(
MorA-rmod(M,M′)

)
→ MorA-rmod(grk(M), grn+k(M

′)).

which enables us to define the k-module morphism

grn
(
MorA-rmod(M,M′)

)
→ Morgrm(A)-rmod(grk(M)⊗ grm(A), grn+k(M

′)⊗ grm(A)),

for any m ∈ Z. Thanks to Definition 2.1.16, one then defines the k-module morphism

gM,M′
n : grn

(
MorA-rmod(M,M′)

)
→ Morgr(A)-rmod(gr(M), gr(M′))n

to be the direct sum over k,m ∈ Z of these k-module morphisms. In particular, we set

gM
n := gM,M

n : grn
(
Endgr(A)-rmod(M)

)
→ EndA-rmod(gr(M))n

Lemma 2.2.1. Let A be an object of k-algfil and M and M′ be two objects of A-rmodfil. For
any n ∈ Z, the k-module morphism

gM,M′
n : grn

(
MorA-rmod(M,M′)

)
→ Morgr(A)-rmod(gr(M), gr(M′))n

is such that the following diagram

grn (MorA-rmod(M,M′))⊗ grn′ (MorA-rmod(M
′,M′′)) grn+n′ (MorA-rmod(M,M′′))

Morgr(A)-rmod(gr(M), gr(M′))n ⊗Morgr(A)-rmod(gr(M
′), gr(M′′))n′ Morgr(A)-rmod(gr(M), gr(M′′))n+n′

g
M,M′
n ⊗g

M′,M′′
n′ g

M,M′′
n+n′

commutes. In particular, the map

gM :=
⊕
n∈Z

gM
n : gr (EndA-rmod(M)) → Endgr(A)-rmod(gr(M))

is a morphism of k-alggr.

Proof. Immediate. □

Lemma 2.2.2. (a) If (A,B,M, ρ, e, r, c) is an object of k-BFSfil, then(
gr(A), gr(B), gr(M),gM ◦ gr(ρ), [e]1,gM,A

0 ([r]0),g
A,M
1 ([c]1)

)
is an object of k-BFSgr.

(b) If (f , g,φ) is a morphism of k-BFSfil, then the triple

(gr(f), gr(g), gr(φ))

is a morphism of k-BFSgr.

Proof. (a) Through a direct verification, one checks that the tuple(
gr(A), gr(B), gr(M),gM ◦ gr(ρ)

)
is a graded k-bimodule. Regarding the factorization structure, since e ∈ F1B,
r ∈ F0MorA-rmod(M,A) and c ∈ F1MorA-rmod(A,M), one then obtains [e]1 ∈ gr1(B),
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g
M,A
0 ([r]0) ∈ Morgr(A)-rmod(gr(M), gr(A))0 and g

A,M
1 ([c]1) ∈ Morgr(A)-rmod(gr(A), gr(M))1,

respectively. Next, let us consider the diagram
(2.6)

F0MorA-rmod(M,A)⊗F1MorA-rmod(A,M) F1EndA-rmod(M) F1B

gr0MorA-rmod(M,A)⊗ gr1MorA-rmod(A,M) gr1EndA-rmod(M) gr1(B)

Morgr(A)-rmod(gr(M), gr(A))0 ⊗Morgr(A)-rmod(gr(A), gr(M))1 Endgr(A)-rmod(gr(M))1 gr1(B)

[−]0⊗[−]1 [−]1

F1ρ

[−]1

g
M,A
0 ⊗g

M,A
1

gM
1

gr1ρ

gr1ρ

The top squares commute by the definitions of associated graded morphisms and the
bottom squares commute thanks to Lemma 2.2.1. Recall that ρ(e) = c ◦ r (equality in
F1EndA-rmod(M)). The image of this equality by [−]1 is, using the commutativity of the
top squares of Diagram (2.6), the following equality

grρ([e]1) = [c]1 ◦ [r]0 ∈ gr1EndA-rmod(M).

Using the commutativity of the bottom square of Diagram (2.6), the image of this equality
by gM

1 is the following equality

gM
1 ◦ grρ([e]1) = g

A,M
1 ([c]1) ◦ gM,A

0 ([r]0) ∈ Endgr(A)-rmod(gr(M))1

(b) Direct verification.
□

Corollary 2.2.3. The assignment given by (a) and (b) of Lemma 2.2.2 defines a functor
k-BFSfil → BFSgr.

Proof. Immediate. □

2.3. The functors k-BFS → Mor(k-alg), k-BFSfil → Mor(k-algfil) and k-BFSgr → Mor(k-alggr).
For any category C, define the category Mor(C) whose objects are morphisms of C and whose
morphisms are commutative diagrams.
The forgetful functor k-algfil → k-alg induces a functor

(2.7) Mor(k-algfil) → Mor(k-alg).

Moreover, the functor gr : k-algfil → k-alggr induces a functor

(2.8) Mor(k-algfil) → Mor(k-alggr).

2.3.1. The functor k-BFS → Mor(k-alg).

Lemma 2.3.1. Let B be an object of k-alg and e ∈ B. For b, b′ ∈ B, denote b ·e b′ := beb′. Then
k⊕ (B, ·e) is an object of k-alg whose product1 is given explicitly by

(λ, b) ·e (λ′, b′) := (λλ′, λb′ + λ′b+ b ·e b′).

Proof. Direct verification. □

Proposition-Definition 2.3.2. Let (A,B,M, ρ, e, r, c) be an object of k-BFS and consider the
evaluation map EndA-rmod(A) → A, u 7→ u(1A). Then, the map ∆ : k ⊕ (B, ·e) → A given by
1 7→ 1A and for b ∈ B,

b 7→ r ◦ ρ(b) ◦ c (1A),

is a morphism of k-alg.

1which will be abusively denoted “·e” as well.
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Proof. Since the evaluation map EndA-rmod(A) → A, u 7→ u(1A) is a morphism of k-alg (actually
an isomorphism), it suffices to show that ρ̃ : k⊕ (B, ·e) → EndA-rmod(A) given by 1 7→ 1A and
for b ∈ B,

b 7→ r ◦ ρ(b) ◦ c,
is a morphism of k-alg. Since, by definition ρ̃(1) = 1A, it remains to show that ρ̃(b ·e b′) =
ρ̃(b) ◦ ρ̃(b′) for b, b′ ∈ B. Indeed, we have

ρ̃(b ·e b′) = ρ̃(beb′) = r ◦ ρ(beb′) ◦ c = r ◦ ρ(b) ◦ ρ(e) ◦ ρ(b′) ◦ c
= r ◦ ρ(b) ◦ c ◦ r ◦ ρ(b′) ◦ c = ρ̃(b) ◦ ρ̃(b′),

where the third equality comes from the fact that ρ : B → EndA-rmod(M) is an algebra morphism
and the fourth one from the identity ρ(e) = c ◦ r. □

Corollary 2.3.3. The assignment

(2.9) (A,B,M, ρ, e, r, c) 7→ (∆ : k⊕ (B, ·e) → A)

defines a functor k-BFS → Mor(k-alg).

Proof. Immediate verification. □

Remark 2.3.4. Considering the functors F,G : k-BFS → k-alg given by (A,B,M, ρ, e, r, c) 7→
k⊕ (B, ·e) and (A,B,M, ρ, e, r, c) 7→ A respectively, the assignment

(A,B,M, ρ, e, r, c) 7→ (∆ : k⊕ (B, ·e) → A)

is a natural transformation from F to G.

2.3.2. The functor k-BFSfil → Mor(k-algfil).

Lemma 2.3.5. Let B be an object of k-algfil and e ∈ F1B. Then k ⊕ (B, ·e) is an object of
k-algfil with an algebra filtration given by

F0(k⊕ (B, ·e)) = k⊕ (B, ·e) and Fn(k⊕ (B, ·e)) = Fn−1B for n ≥ 1

Proof. Follows from the fact that e ∈ F1B. □

Corollary 2.3.6. If (A,B,M, ρ, e, r, c) is an object of k-BFSfil, then the map ∆ : k⊕ (B, ·e) →
A defined in Proposition-Definition 2.3.2 is a morphism of k-algfil. Moreover, the assignment

(2.10) (A,B,M, ρ, e, r, c) 7→ (∆ : k⊕ (B, ·e) → A)

is a functor k-BFSfil → Mor(k-algfil).

Proof. Follows from the fact that ρ is compatible with filtrations, from r ∈ F0MorA-rmod(M,A)
and c ∈ F1MorA-rmod(A,M) and from the compatibility of the composition with filtrations. □

2.3.3. The functor k-BFSgr → Mor(k-alggr).

Lemma 2.3.7. Let B be an object of k-alggr and e ∈ B1. Then k⊕(B, ·e) is an object of k-alggr
with an algebra grading given by

(k⊕ (B, ·e))0 = k and (k⊕ (B, ·e))n = Bn−1 for n ≥ 1

Proof. Follows from the fact that e ∈ B1. □

Corollary 2.3.8. If (A,B,M, ρ, e, r, c) is an object of k-BFSgr, then the map ∆ : k⊕ (B, ·e) →
A defined in Proposition-Definition 2.3.2 is a morphism of k-alggr. Moreover, the assignment

(A,B,M, ρ, e, r, c) 7→ (∆ : k⊕ (B, ·e) → A)

is a functor k-BFSgr → Mor(k-alggr).

Proof. Follows from the fact that ρ is compatible with gradings, from r ∈ MorA-rmod(M,A)0
and c ∈ MorA-rmod(A,M)1, and from the compatibility of the composition with gradings. □
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3. The objects OB
mat, O

B
mat,fil and ODR

mat and the harmonic coproducts

In this section, we construct explicit bimodules with factorization structures associated to
the Betti and de Rham realizations of the double shuffle theory developed in [EF1] (Corollary
3.1.4). Building on the functor k-BFS → Mor(k-alg) introduced in the previous section, we then
define algebra morphisms (3.2) and (3.12) that we demonstrate to correspond precisely to the
harmonic coproducts described in [EF1] (Theorems 3.2.1 and 3.5.1).

3.1. The object OB
mat of k-BFS. Let F2 be the free group with generators X0 and X1 and let

VB := kF2 be its group algebra. For i ∈ {0, 1}, we will abusively denote

Xi := Xi ⊗ 1 ∈ VB ⊗VB and Yi := 1⊗Xi ∈ VB ⊗VB.

Recall from [EF1, Sec. 7.2.3] the algebra morphism ρ : VB → M3(V
B ⊗VB) given by

ρ(X0) =

X0 0 0
0 (1−X1)X0 + Y −1

1 Y0Y1 (1−X1)X0X1

0 X0 − Y −1
1 Y0Y1X

−1
1 X0X1

 and ρ(X1) =

(X1 − 1)Y1 + 1 Y1(1− Y1) 0
1−X1 Y1 0

0 0 1


Proposition-Definition 3.1.1. The tuple (VB ⊗VB,VB, (VB ⊗VB)⊕3, rρ) is a k-bimodule

where rρ : VB → M3(V
B ⊗VB) is the k-algebra morphism given by the composition

rρ := Addiag(Y1,X1,(X0X1)−1Y −1
1 Y0Y1)−1 ◦M3(opF 2

2
) ◦ t(−) ◦ ρ ◦ opF2

.

Proof. This follows from the algebra morphism status of ρ and from the k-algebra isomorphism

M3(V
B ⊗VB) ≃ End(VB⊗VB)-rmod

(
(VB ⊗VB)⊕3

)
. □

Definition 3.1.2. Set

rrow :=
(
1 −X1 0

)
Y1 ∈ M1,3(V

B ⊗VB) and rcol := Y −1
1

X1 − 1
1− Y1

0

 ∈ M3,1(V
B ⊗VB).

Proposition 3.1.3. We have (equality in M3(V
B ⊗VB))

rρ(X1 − 1) = rcol · rrow.

Proof. By definition we have

rρ(X1 − 1) = diag(Y1, X1, (X0X1)
−1Y −1

1 Y0Y1)
−1 M3(opF 2

2
)
(
t(ρ(opF2

(X1 − 1)))
)

diag(Y1, X1, (X0X1)
−1Y −1

1 Y0Y1).

On the other hand, from [EF1, page 46], we have

ρ(opF2
(X1 − 1)) = ρ(X−1

1 − 1) = −

Y1−1
0

 (X1Y1)
−1
(
X1 − 1 1− Y1 0

)

=

 −X−1
1

(X1Y1)
−1

0

(X1 − 1 1− Y1 0
)

.
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Moreover, applying identity (A.2) for (t, n, s) = (3, 1, 3), E = kF 2
2 and f = opF 2

2
, it follows that

M3(opF 2
2
)
(
t(ρ(opF2

(X1 − 1)))
)
= M1,3(opF 2

2
)
(

t(
X1 − 1 1− Y1 0

))
M3,1(opF 2

2
)

 t −X−1
1

(X1Y1)
−1

0


=

X−1
1 − 1

1− Y −1
1

0

 (
−X1 X1Y1 0

)
Then

rρ(X1 − 1) = diag(Y1, X1, (X0X1)
−1Y −1

1 Y0Y1)
−1

X−1
1 − 1

1− Y −1
1

0

(−X1 X1Y1 0
)

diag(Y1, X1, (X0X1)
−1Y −1

1 Y0Y1)

=

(X1Y1)
−1 − Y −1

1

X−1
1 − (X1Y1)

−1

0

 (
−X1Y1 X1Y1X1 0

)
=

X1Y
−1
1 − Y −1

1

Y −1
1 − 1
0

 (
Y1 −X1Y1 0

)
,

which is the announced result. □

Corollary 3.1.4. The tuple

(3.1) OB
mat := (VB ⊗VB,VB, (VB ⊗VB)⊕3, rρ,X1 − 1, rrow, rcol)

is an object of k-BFS, where rrow (resp. rcol) is identified with its corresponding right VB⊗VB-
module morphism (VB ⊗VB)⊕3 → VB ⊗VB (resp. VB ⊗VB → (VB ⊗VB)⊕3).

Proof. This follows from Proposition-Definition 3.1.1 and Proposition 3.1.3. □

3.2. The image of OB
mat in Mor(k-alg) and the coproduct ∆W,B. Applying the functor

k-BFS → Mor(k-alg) given in (2.9) to the object OB
mat given in (3.1), one defines the algebra

morphism

(3.2) ∆OB
mat

: k⊕ (VB, ·(X1−1)) → VB ⊗VB.

Explicitly, for b ∈ VB we have

∆OB
mat

(b) = rrow · rρ(b) · rcol,

On the other hand, recall from [EF1, Sec. 2.1] the subalgebra WB of VB given by

WB := k⊕VB(X1 − 1).

There is an algebra morphism k⊕ (VB, ·(X1−1)) → WB given by v 7→ v · (X1−1). It is obviously
surjective, and it is injective since right multiplication by X1−1 is an injective endomorphism of
VB. On the other hand, it follows from [EF1, Proposition 2.3] that the algebra WB is generated
by

(3.3) X−1
1 and Xn

0 (X1 − 1) for n ∈ Z.

An algebra morphism ∆W,B : WB → WB ⊗WB is given by (see [EF1, Lemma 2.11])

∆W,B(X−1
1 ) = X−1

1 ⊗X−1
1 ,

and for n ∈ Z,

∆W,B(Xn
0 (X1 − 1)) = Xn

0 (X1 − 1)⊗ 1 + 1⊗Xn
0 (X1 − 1)−

n−1∑
k=1

Xk
0 (X1 − 1)⊗Xn−k

0 (X1 − 1),
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using the convention that for a map f from Z to an abelian group and p, q ∈ Z,

(3.4)

q∑
k=p

f(k) :=


f(p) + · · ·+ f(q) if q > p− 1

0 if q = p− 1

−f(p− 1)− · · · − f(q + 1) if q < p− 1

Theorem 3.2.1. The following diagram

(3.5)

WB WB ⊗WB

k⊕ (VB, ·X1−1) VB ⊗VB

∆W,B

≃
∆

OBmat

commutes.

Proof. Since all arrows of diagram (3.5) are algebra morphisms, it suffices to establish the
commutativity through evaluation on a system of generators of WB, which we take to be the
ones given in (3.3).
The image of X−1

1 by the composition WB → (WB ⊗WB) ↪→ (VB ⊗VB) is given by

X−1
1 7→ X−1

1 ⊗X−1
1 .

On the other hand, recall that X−1
1 = −X−1

1 (X1−1)+1. The image of X−1
1 by the composition

WB ≃
(
k⊕ (VB, ·X1−1)

)
↪→ (VB ⊗VB) is then given by

X−1
1 7→ −rrow · rρ(X−1

1 ) · rcol + 1.

We have

rρ(X−1
1 ) = Addiag(Y1,X1,(X0X1)−1Y −1

1 Y0Y1)−1 ◦M3(opF 2
2
)
(
tρ(X1)

)
= Addiag(Y1,X1,(X0X1)−1Y −1

1 Y0Y1)−1 ◦M3(opF 2
2
)

Y1X1 − Y1 + 1 −X1 + 1 0
Y1 − Y 2

1 Y1 0
0 0 1


= Addiag(Y1,X1,(X0X1)−1Y −1

1 Y0Y1)−1

(Y1X1)
−1 − Y −1

1 + 1 −X−1
1 + 1 0

Y −1
1 − Y −2

1 Y −1
1 0

0 0 1


=

(Y1X1)
−1 − Y −1

1 + 1 −Y −1
1 + Y −1

1 X1 0
X−1

1 −X−1
1 Y −1

1 Y −1
1 0

0 0 1

 ,

where the second equality comes from [EF1, Lemma 7.11]. Therefore,

−rrow · rρ(X−1
1 ) · rcol + 1 = −1 + (X1Y1)

−1 + 1 = X−1
1 ⊗X−1

1 ,

thus proving the equality of the images of X−1
1 .

Next, for n ∈ Z, the image of Xn
0 (X1−1) by the composition WB → (WB⊗WB) ↪→ (VB⊗VB)

is given by

Xn
0 (X1 − 1) 7→ Xn

0 (X1 − 1)⊗ 1 + 1⊗Xn
0 (X1 − 1)−

n−1∑
k=1

Xk
0 (X1 − 1)⊗Xn−k

0 (X1 − 1).

On the other hand, the image of Xn
0 (X1 − 1) by the composition WB ≃

(
k⊕ (VB, ·X1−1)

)
↪→

(VB ⊗VB) is given by

Xn
0 (X1 − 1) 7→ ∆OB

mat
(Xn

0 ) = rrow · rρ(Xn
0 ) · rcol.
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We have

rρ(Xn
0 ) = diag(Y1, X1, (X0X1)

−1Y −1
1 Y0Y1)

−1 ·M3(opF 2
2
)
(
tρ(X−n

0 )
)
·diag(Y1, X1, (X0X1)

−1Y −1
1 Y0Y1).

Notice that

rrow · diag(Y1, X1, (X0X1)
−1Y −1

1 Y0Y1)
−1

=
(
1 −Y1 0

)
,

and

diag(Y1, X1, (X0X1)
−1Y −1

1 Y0Y1)
−1 · rcol =

 X1 − 1
X1Y

−1
1 −X1

0

 .

Then

∆OB
mat

(Xn
0 ) =

(
1 −Y1 0

)
·M3(opF 2

2
) ◦ t(−)

(
ρ(X−n

0 )
)
·

 X1 − 1
X1Y

−1
1 −X1

0


= M1,3(opF 2

2
) ◦ t(−)

 1
−Y −1

1
0

 ·M3(opF 2
2
) ◦ t(−)

(
ρ(X−n

0 )
)

·M3,1(opF 2
2
) ◦ t(−)

((
X−1

1 − 1 X−1
1 Y1 −X−1

1 0
))

= opF 2
2

−X−1
1

(
−1 +X1 −Y1 + 1 0

)
ρ(X−n

0 )

Y1−1
0

Y −1
1


= opF 2

2

(
−X−1

1 ⊗ 1
(
(X1 − 1)X−n

0 ⊗ 1+1⊗ (1−X−1
1 )X−n

0 X1

−
−n−1∑
k=1

(X1 − 1)Xk
0 ⊗ (1−X−1

1 )X−n−k
0 X1

)
1⊗X−1

1

)

= Xn
0 (X1 − 1)⊗X1 +X1 ⊗Xn

0 (X1 − 1) +
−n−1∑
k=1

X−k
0 (X1 − 1)⊗Xn+k

0 (X1 − 1)

= Xn
0 (X1 − 1)⊗X1 +X1 ⊗Xn

0 (X1 − 1)−
n∑

k=0

Xk
0 (X1 − 1)⊗Xn−k

0 (X1 − 1)

= Xn
0 (X1 − 1)⊗X1 +X1 ⊗Xn

0 (X1 − 1)− (X1 − 1)⊗Xn
0 (X1 − 1)−Xn

0 (X1 − 1)⊗ (X1 − 1)

−
n−1∑
k=1

Xk
0 (X1 − 1)⊗Xn−k

0 (X1 − 1)

= Xn
0 (X1 − 1)⊗ 1 + 1⊗Xn

0 (X1 − 1)−
n−1∑
k=1

Xk
0 (X1 − 1)⊗Xn−k

0 (X1 − 1)

where the third equality follows by applying identities (A.1) and (A.2), the fourth one from
[EF1, Lemma 7.12], and the sixth one by using the identity (coming from (3.4))

−n−1∑
k=1

f(k) = −
n∑

k=0

f(−k),

for any map f from Z to an abelian group. This concludes the proof of the equality of the
images of Xn

0 (X1 − 1). □
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Remark 3.2.2. Under the identification WB ≃ k⊕ (VB, ·X1−1), the commutativity of diagram
(3.5) enables us to obtain that the image of ∆OB

mat
lies in WB ⊗WB as well as the identity

∆OB
mat

= ∆W,B.

3.3. The object OB
mat,fil of k-BFSfil and its image in Mor(k-algfil). Recall from Proposition-

Definition 3.1.1, Definition 3.1.2 and (3.1) the object OB
mat of k-BFS given by

OB
mat := (VB ⊗VB,VB, (VB ⊗VB)⊕3, rρ,X1 − 1, rrow, rcol)

The group algebra VB = kF2 is naturally equipped with a filtration

(3.6) F0kF2 = kF2 and for n ≥ 1, FnkF2 = InF2
,

where IF2 denotes the augmentation ideal of the group algebra kF2, which is the k-submodule of
kF2 generated by the elements g− 1, where g ∈ F2 and is also the right (or left) kF2-submodule
of kF2 generated by X0 − 1 and X1 − 1. The pair (VB, (FnVB)n∈Z) is an object of k-algfil.

Lemma 3.3.1. A filtration (Fn(VB⊗VB))n∈Z of the k-algebra VB⊗VB is defined, for n ≥ 0,
by

Fn(VB ⊗VB) :=
∑

i+j=n

FiVB ⊗FjVB.

The pair (VB ⊗VB, (Fn(VB ⊗VB))n∈Z) is an object of k-algfil.

Proof. Immediate verification. □

Lemma 3.3.2. A filtration (Fn(VB⊗VB)⊕3)n∈Z of the right (VB⊗VB)-module (VB⊗VB)⊕3

is given by

Fn(VB ⊗VB)⊕3 :=
(
Fn(VB ⊗VB)

)⊕3
,

for n ≥ 0. The pair
(
(VB ⊗VB)⊕3, (Fn(VB ⊗VB)⊕3)n∈Z

)
is a filtered bimodule over the pair

of filtered algebras (VB,VB ⊗VB).

Proof. The first statement can be proved by a direct verification. For the second statement, we
have that

rρ(X0 − 1) =

X0 − 1 0 0
0 (X1Y1)

−1Y0Y1 − 1 (X1Y1)
−1(1−X−1

1 X−1
0 Y0)Y0Y1

0 (Y0Y1)
−1X0(1−X1)Y0Y1 X0 − 1 + (1−X0X

−1
1 X−1

0 )Y −1
1 Y0Y1


∈ M3(F

1(VB ⊗VB))

and

rρ(X1 − 1) =

X1(X1 − 1)Y −1
1 X1(1−X1) 0

1− Y1 X1(Y1 − 1) 0
0 0 0

 ∈ M3(F
1(VB ⊗VB)),

which implies that rρ(IF2) ⊂ M3(F
1(VB ⊗ VB)) and therefore for any n ≥ 1, we obtain

rρ(InF2
) ⊂ M3(F

n(VB ⊗VB)). □

Lemma 3.3.3. We have rcol ∈ F1(VB ⊗VB)⊕3.

Proof. This follows by definition of rcol. □

Corollary 3.3.4. The filtrations given in (3.6), Lemmas 3.3.1 and 3.3.2 define a filtered struc-
ture on OB

mat, which defines an object OB
mat,fil of the category k-BFSfil.
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Proof. Follows from Lemmas 3.3.1, 3.3.2 and 3.3.3, where in the latter lemma, we identify rcol
with its corresponding right (VB⊗VB)-module morphismVB⊗VB → (VB⊗VB)⊕3 and use the
isomorphism of filtered k-modules Mor(VB⊗VB)-rmod(V

B ⊗VB, (VB ⊗VB)⊕3) ≃ (VB ⊗VB)⊕3

given by applying Lemma 2.1.11 to A = VB ⊗VB and M = (VB ⊗VB)⊕3. □

Corollary 3.3.5. The image of the object OB
mat,fil by the functor k-BFSfil → Mor(k-algfil) given

in (2.10) is a filtered algebra morphism

∆OB
mat,fil

: k⊕ (VB, ·(X1−1)) → VB ⊗VB,

which, as an algebra morphism, is equal to ∆OB
mat

: k⊕ (VB, ·(X1−1)) → VB⊗VB given in (3.2).

Proof. The left hand side of (0.2) is a commutative diagram of functors. The result follows by
evaluating the images of the object OB by the functors k-BFSfil → k-BFS → Mor(k-alg) and
k-BFSfil → Mor(k-alg) → Mor(k-algfil). □

3.4. The objects ODR
mat and gr(OB

mat,fil) of k-BFSgr. Let f2 be the free graded k-Lie algebra

with generators e0 and e1 of degree 1 and let VDR := U(f2) be its universal enveloping algebra,
which is an object of k-alggr thanks to [EF1, Sec. 2.1]. Set e∞ := −e0 − e1. For i ∈ {0, 1,∞},
we will abusively denote

ei := ei ⊗ 1 ∈ VDR ⊗VDR and fi := 1⊗ ei ∈ VDR ⊗VDR.

Recall from [EF1, Sec. 5.2.3] the algebra morphism ρ : VDR → M3(V
DR ⊗VDR) given by

ρ(e0) =

e0 0 0
0 −e1 + f0 −e1
0 −e∞ − f0 −e∞

 and ρ(e1) =

 e1 −f1 0
−e1 f1 0
0 0 0

 .

Moreover, the algebra VDR ⊗VDR is equipped with the grading given by

(VDR ⊗VDR)n :=
∑

i+j=n

VDR
i ⊗VDR

j ,

for any n ≥ 0. Additionally, the right (VDR ⊗VDR)-module (VDR ⊗VDR)⊕3 is equipped with
the grading given by

((VDR ⊗VDR)⊕3)n := ((VDR ⊗VDR)n)
⊕3,

for any n ≥ 0, which we denote by (VDR ⊗VDR)⊕3
n .

Proposition-Definition 3.4.1. The tuple (VDR⊗VDR,VDR, (VDR⊗VDR)⊕3, rρ) is a graded
k-bimodule where rρ : VDR → M3(V

DR ⊗VDR) is the k-algebra morphism given by

rρ := M3(Sf⊕2
2
) ◦ t(−) ◦ ρ ◦ Sf2 .

Proof. The bimodule structure follows from the algebra morphism status of ρ and from the k-
algebra isomorphism M3(V

DR ⊗VDR) ≃ End(VDR⊗VDR)-rmod

(
(VDR ⊗VDR)⊕3

)
. The graded

status of the bimodule (VDR ⊗VDR,VDR, (VDR ⊗VDR)⊕3, rρ) follows from the fact that

rρ(e0) =

e0 0 0
0 −e1 + f0 −e∞ − f0
0 −e1 −e∞

 ∈ M3((V
DR ⊗VDR)1)

and

rρ(e1) =

 e1 −e1 0
−f1 f1 0
0 0 0

 ∈ M3((V
DR ⊗VDR)1).

□
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Definition 3.4.2. Set

rrow :=
(
1 −1 0

)
∈ M1,3(V

DR ⊗VDR) and rcol :=

 e1
−f1
0

 ∈ M3,1(V
DR ⊗VDR).

Lemma 3.4.3. We have (equality in M3(V
DR ⊗VDR))

rρ(e1) = rcol · rrow.

Proof. Immediate verification. □

Lemma 3.4.4. We have rcol ∈ (VB ⊗VB)⊕3
1 .

Proof. This follows by definition of rcol given in Definition 3.4.2. □

Corollary 3.4.5. The tuple

(3.7) ODR
mat := (VDR ⊗VDR,VDR, (VDR ⊗VDR)⊕3, rρ, e1, rrow, rcol)

is an object of k-BFSgr, where rrow (resp. rcol) is identified with its corresponding right
(VDR ⊗ VDR)-module morphism (VDR ⊗ VDR)⊕3 → VDR ⊗ VDR (resp. VDR ⊗ VDR →
(VDR ⊗VDR)⊕3).

Proof. This follows from Proposition-Definition 3.4.1 and Lemmas 3.4.3 and 3.4.4. □

Proposition 3.4.6. The tuple

gr(OB
mat,fil) := (gr(VB ⊗VB), grVB, gr((VB ⊗VB)⊕3), gr(rρ), [X1 − 1]1, gr0(rrow), gr1(rcol))

is an object of k-BFSgr. Moreover, the objects gr(OB
mat,fil) and ODR

mat are isomorphic.

Proof. The first statement follows by applying the functor k-BFSfil → k-BFSgr defined in
Sec. 2.2. For the second statement, recall from [EF1, Sec. 2.4.1] that there is a graded
algebra isomorphism grVB ≃ VDR given by [Xi − 1]1 7→ ei (i ∈ {0, 1}). This induces a
graded algebra isomorphism gr(VB ⊗ VB) ≃ VDR ⊗ VDR, therefore a graded right mod-
ule isomorphism gr((VB ⊗ VB)⊕3) ≃ (VDR ⊗ VDR)⊕3 over the graded algebra isomorphism
gr(VB ⊗VB) ≃ VDR ⊗VDR. Finally, the following diagrams are commutative

gr0(V
B ⊗VB)⊕3 gr0(V

B)

(VDR ⊗VDR)⊕3 VDR

gr0(rrow)

≃ ≃

rrow

gr1(V
B) gr1(V

B ⊗VB)⊕3

VDR (VDR ⊗VDR)⊕3

gr1(rcol)

≃ ≃

rcol

and

gr(VB) M3(gr(V
B ⊗VB))

VDR M3(V
DR ⊗VDR)

gr(rρ)

≃ ≃

rρ

Indeed, for the first two diagrams, it suffices to prove that gr(rrow) = rrow and gr(rcol) = rcol,
under the isomorphism grVB ≃ VDR. For g, h, k ∈ F 2

2 , we recall the following identities

[g]0 = 1(3.8)

[g(h− 1)k]1 = [h− 1]1(3.9)

[g−1 − 1]1 = −[g − 1]1(3.10)

[gh− 1]1 = [g − 1]1 + [h− 1]1(3.11)
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We have

gr0(rrow) =
(
[Y1]0 −[X1Y1]0 0

)
=
(
1 −1 0

)
= rrow,

where the second equality follows from identity (3.8) for applied to g = Y1 and to g = X1Y1.
On the other hand,

gr1(rcol) =

[Y −1
1 (X1 − 1)]1
[Y −1

1 − 1]1
0

 =

 [X1 − 1]1
−[Y1 − 1]1

0

 =

 e1
−f1
0

 = rcol,

where the second equality follows from identity (3.9) applied to (g, h, k) = (Y −1
1 , X1, 1) and from

identity (3.10) applied to g = Y1.
For the last diagram, it suffices to prove that gr1(rρ)(Xi − 1) = rρ(ei) (i ∈ {0, 1}), under the

isomorphism grVB ≃ VDR. We have

gr1(rρ)(X1 − 1) =

[X1Y
−1
1 (X1 − 1)]1 [−X1(X1 − 1)]1 0

[−(Y1 − 1)]1 [X1(Y1 − 1)]1 0
0 0 0


=

 [X1 − 1]1 −[X1 − 1]1 0
−[Y1 − 1]1 [Y1 − 1]1 0

0 0 0


=

 e1 −e1 0
−f1 f1 0
0 0 0

 = rρ(ei),

where the second equality follows from identity (3.9) applied to (g, h, k) = (X1Y
−1
1 , X1, 1),

(g, h, k) = (X1, X1, 1) and to (g, h, k) = (X1, Y1, 1). On the other hand, we have

gr1(rρ)(X0 − 1) =

[X0 − 1]1 0 0
0 [(X1Y1)

−1Y0Y1 − 1]1 [(X1Y1)
−1(1−X−1

1 X−1
0 Y0)Y0Y1]1

0 [(Y0Y1)
−1X0(1−X1)Y0Y1]1 [X0 − 1 + (1−X0X

−1
1 X−1

0 )Y −1
1 Y0Y1]1


=

[X0 − 1]1 0 0
0 −[X1 − 1]1 + [Y0 − 1]1 [X0 − 1]1 + [X1 − 1]1 − [Y0 − 1]1
0 −[X1 − 1]1 [X0 − 1]1 + [X1 − 1]1


=

e0 0 0
0 −e1 + f0 −e∞ − f0
0 −e1 −e∞

 ,

where the second equality follows from these identities in IF2/I
2
F2
:

[(X1Y1)
−1Y0Y1 − 1]1 = [Y −1

1 (X−1
1 Y0 − 1)Y1]1

(3.9)
= [X−1

1 Y0 − 1]1
(3.11)
= [X−1

1 − 1]1 + [Y0 − 1]1

(3.10)
= −[X1 − 1]1 + [Y0 − 1]1,

and

[(X1Y1)
−1(1−X−1

1 X−1
0 Y0)Y0Y1]1

(3.9)
= [1−X−1

1 X−1
0 Y0)]1

(3.11)
= −[X−1

1 − 1]1 − [X−1
0 − 1]1 − [Y0 − 1]1

(3.10)
= [X0 − 1]1 + [X1 − 1]1 − [Y0 − 1]1,

and

[(Y0Y1)
−1X0(1−X1)Y0Y1]1

(3.9)
= −[X1 − 1]1,
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and

[X0 − 1 + (1−X0X
−1
1 X−1

0 )Y −1
1 Y0Y1]1

(3.9)
= [X0 − 1]1 − [X0X

−1
1 X−1

0 − 1]1

(3.11)
= [X0 − 1]1 − [X0 − 1]1 − [X−1

1 − 1]1 − [X−1
0 − 1]1

(3.10)
= [X0 − 1]1 + [X1 − 1]1.

This concludes the proof of the isomorphism claim between the two objects of k-BFSgr. □

3.5. The image of ODR
mat in Mor(k-alggr) and the coproduct ∆W,DR. Applying the functor

k-BFSgr → Mor(k-alggr) given in Sec. 2.3.3 to the object ODR
mat given in (3.7), one defines the

algebra morphism

(3.12) ∆ODR
mat

: k⊕ (VDR, ·e1) → VDR ⊗VDR.

Explicitly, for v ∈ VDR we have

∆ODR
mat

(v) = rrow · rρ(v) · rcol,

On the other hand, recall from [EF1, Sec. 1.1] the subalgebra WDR of VDR given by

WDR := k⊕VDRe1.

There is an algebra morphism k ⊕ (VDR, ·e1) → WDR given by v 7→ v · e1. It is obviously
surjective, and it is injective since right multiplication by e1 is an injective endomorphism of
VDR. On the other hand, it follows from [EF1, Sec. 1.2] that the algebra WDR is freely
generated by

(3.13) en0e1 for n ∈ Z≥0.

An algebra morphism ∆W,DR : WDR → WDR ⊗WDR is given by (see [EF1, (1.2.1)])

∆W,DR(en0e1) = en0e1 ⊗ 1 + 1⊗ en0e1 −
n−1∑
k=0

ek0e1 ⊗ en−k−1
0 e1,

for n ∈ Z≥0.

Theorem 3.5.1. The following diagram

(3.14)

WDR WDR ⊗WDR

k⊕ (VDR, ·e1) VDR ⊗VDR

∆W,DR

≃
∆

ODR
mat

commutes.

Proof. Since all arrows of diagram (3.14) are algebra morphisms, it suffices to establish the
commutativity through evaluation on a system of generators of WDR, which we take to be the
ones given in (3.13).
Let n ∈ Z≥0. The image of en0e1 by the composition WDR → (WDR ⊗WDR) ↪→ (VDR ⊗VDR)
is given by

en0e1 7→ en0e1 ⊗ 1 + 1⊗ en0e1 −
n−1∑
k=0

ek0e1 ⊗ en−k−1
0 e1.

On the other hand, the image of en0e1 by the composition WDR ≃
(
k⊕ (VDR, ·e1)

)
↪→ (VDR ⊗

VDR is given by

en0e1 7→ rrow · rρ(en0 ) · rcol.
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We have

rrow · rρ(en0 ) · rcol =
t(

trcol · ρ(en0 ) · trrow

)

= en0e1 ⊗ 1 + 1⊗ en0e1 −
n−1∑
k=0

ek0e1 ⊗ en−k−1
0 e1,

where the last equality comes from [EF1, Lemma 5.7]. □

Remark 3.5.2. Under the identification WDR ≃ k⊕ (VDR, ·e1), the commutativity of diagram
(3.14) enables us to obtain that the image of ∆ODR

mat
lies in WDR ⊗WDR as well as the identity

∆ODR
mat

= ∆W,DR.

Thanks to [EF1, Proposition 2.8], the graded algebra isomorphism gr(VB) ≃ VDR induces a
graded algebra isomorphism gr(WB) ≃ WDR. An alternate proof of [EF1, Proposition 2.16] is
enabled by the setting introduced in this paper, and is displayed in the following result:

Corollary 3.5.3. The following diagram of k-alggr morphisms

gr(WB) gr(WB ⊗WB)

WDR WDR ⊗WDR

gr(∆W,B)

≃ ≃

∆W,DR

commutes.

Proof. Let us consider the following cube

gr(k⊕ (VB, ·X1−1)) gr(VB ⊗VB)

gr(WB) gr(WB ⊗WB)

k⊕ (VDR, ·e1) VDR ⊗VDR

WDR WDR ⊗WDR

≃

gr(∆
OB
mat,fil

)

≃

gr(∆W,B)

≃

≃

≃

∆
ODR
mat

∆W,DR

≃

It is immediate that the left and right diagrams commute. The lower diagram commutes thanks
to Theorem 3.5.1. Thanks to Corollary 3.3.5, the upper diagram is obtained by applying the gr
functor to the commutative diagram of Theorem 3.2.1, proving its commutativity. By applying
the functor k-BFSgr → Mor(k-alggr) to the isomorphism gr(OB

mat,fil) ≃ ODR
mat from Proposition

3.4.6 then using the equality gr(∆OB
mat,fil

) = ∆gr(OB
mat,fil)

obtained from from the right hand side of

the commutative diagram of functors (0.2), we deduce that the diagram in the back is commu-
tative. Finally, this collection of commutativities enables us to deduce that the front diagram
commutes, thus proving the result. □
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4. The objects OB, OB
fil and ODR

In this section, we present an alternative construction of the bimodules from Sec. 3. This
construction is geometric, based on the groups and Lie algebras corresponding to braids (see
[EF1]). It gives rise to a graded bimodule MDR (Proposition-Definition 4.5.3) and a filtered
bimodule MB (Proposition-Definition 4.2.3), which are equipped with a bimodule morphism
MDR → gr(MB) (see (4.28)). The bimodules MB and MDR are respectively related by isomor-
phisms to the filtered and graded bimodules of Sec. 3 (see Theorems 4.3.4 and 4.5.4), which
enables one to equip them with factorization structures by pullback (Proposition-Definitions
4.7.1 and 4.7.3) and to prove that MDR → gr(MB) is an isomorphism (Theorem 4.6.4).

4.1. Betti geometric material. LetK4 be the braid group with four strands, that is, the group
presented by generators x12, x13, x14, x23, x24 and x34 which satisfy the following relations

(i) (xijxikxjk, xij) = (xijxikxjk, xik) = (xijxikxjk, xjk) = 1 for i < j < k ∈ J1, 4K.
(ii) (x12, x34) = (x13, x

−1
12 x24x12) = (x14, x23) = 1.

Let ω4 := x12x13x23x14x24x34. One checks that ω4 is a generator of the group Z(K4). One then
defines

P ∗
5 := K4/Z(K4) = K4/⟨ω4⟩.

We shall abusively use the same notation the generators of K4 and their classes in P ∗
5 .

Lemma 4.1.1 ([EF1, Lemma 7.6]). (a) There are group morphisms pr
1
, pr

2
,pr

5
: P ∗

5 → F2

given by

x x12 x13 x14 x23 x24 x34

pr
1
(x) 1 1 1 X0 (X1X0)

−1 X1

pr
2
(x) 1 (X0X1)

−1 X0 1 1 X1

pr
5
(x) X1 (X0X1)

−1 X0 X0 (X1X0)
−1 X1

(b) There is a group morphism ℓ : F2 → P ∗
5 given by X0 7→ x23 and X1 7→ x12. It is such that

pr
5
◦ ℓ = idF2.

Definition 4.1.2. Define pr
12

: P ∗
5 → F 2

2 to be the group morphism p 7→ (pr
1
(p), pr

2
(p)).

We assign to this group morphism and to each group morphism of Lemma 4.1.1 the following
morphisms of k-alg:

(a) kpr
j
: kP ∗

5 → VB, for j ∈ {1, 2, 5}; (b) kpr
12

: kP ∗
5 → VB ⊗VB;

(c) kℓ : VB → kP ∗
5 .

Recall that ker(kpr
5
) is a two-sided ideal of kP ∗

5 . This induces, in particular, a natural right

kP ∗
5 -module structure on ker(kpr

5
).

Lemma 4.1.3. The map (kP ∗
5 )

⊕3 → ker(kpr
5
) given by

(p
1
, p

2
, p

3
) 7→ (x15 − 1)p

1
+ (x25 − 1)p

2
+ (x35 − 1)p

3

is a right kP ∗
5 -module isomorphism, where x15, x25 and x35, given by x15 := (x12x13x14)

−1,
x25 := (x12x23x24)

−1 and x35 := (x13x23x34)
−1, freely generate ker(kpr

5
).

Proof. This is analogous to [EF1, Lemma 7.10]. The two-sided ideal nature of ker(kpr
5
) enables

one to replace left actions by right actions in this proof. □
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4.2. A Betti bimodule (VB ⊗VB,VB,MB, rρ).

Lemma 4.2.1. The algebra morphism kℓ : VB → kP ∗
5 equips the k-submodule ker(kpr

5
) of

kP ∗
5 with a (VB,kP ∗

5 )-bimodule structure.

Proof. Recall that the k-submodule ker(kpr
5
) of kP ∗

5 is a two-sided ideal of kP ∗
5 . This naturally

equips it with a (kP ∗
5 ,kP

∗
5 )-bimodule structure. Pulling back this structure by the algebra

morphism kℓ : VB → kP ∗
5 , one equips ker(kpr

5
) with the structure of a (VB,kP ∗

5 )-bimodule.

Its right module structure is that of ker(kpr
5
), and its compatible left module structure is given

by

VB kℓ−→ kP ∗
5 → EndkP ∗

5 -rmod(ker(kpr5)),

where the second arrow is given by the left kP ∗
5 -module structure of ker(kpr

5
). □

Lemma 4.2.2. The algebra morphism kpr
12

: kP ∗
5 → VB ⊗VB equips the k-module VB ⊗VB

with a (kP ∗
5 ,V

B ⊗VB)-bimodule structure.

Proof. It is immediate that the algebra VB ⊗VB is naturally a right (VB ⊗VB)-module. On
the other hand, let us consider the composition

kP ∗
5

kpr
12−−−→ VB ⊗VB ≃ End(VB⊗VB)-rmod(V

B ⊗VB),

where the End(VB⊗VB)-rmod(V
B ⊗ VB) ≃ VB ⊗ VB is the algebra isomorphism given by the

evaluation at 1 as in Proposition-Definition 2.3.2. This equips VB ⊗VB with a compatible left
kP ∗

5 -module structure. □

Proposition-Definition 4.2.3. The (VB,kP ∗
5 )-bimodule ker(kpr

5
) and the (kP ∗

5 ,V
B ⊗VB)-

bimodule VB ⊗VB define a (VB,VB ⊗VB)-bimodule

MB := ker(kpr
5
)⊗kP ∗

5
(VB ⊗VB).

More explicitly, the left VB-module structure on MB is given by

rρ : VB → End(VB⊗VB)-rmod(M
B), v 7→

(
p⊗ w 7→ kℓ(v)p⊗ w

)
.

Proof. This follows from Lemmas 4.2.1 and 4.2.2 and Proposition 2.1.4. □

The remainder of this paragraph is dedicated to the proof of the following result:

Proposition 4.2.4. The bimodules (VB⊗VB,VB,MB, rρ) and (VB⊗VB,VB, (VB⊗VB)⊕3, rρ)
are isomorphic.

To prove the proposition, we first establish that the algebra morphism rρ : VB → M3(V
B⊗VB)

is related to the geometric material introduced in Sec. 4.1.

Lemma 4.2.5 ([EF1, Lemma 4.1 and Sec. 7.2.2]). (a) For any p ∈ kP ∗
5 , there is a unique

matrix (aij(p))i,j∈J1,3K ∈ M3(kP
∗
5 ) such that

(4.1) (xi5 − 1) p =
3∑

i=1

aij(p) (xj5 − 1).

(b) The map

ϖ : kP ∗
5 → M3(kP

∗
5 ), p 7→

(
aij(p)

)
i,j∈J1,3K

is an algebra morphism.
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Lemma 4.2.6. (a) For any p ∈ kP ∗
5 , there is a unique matrix (bij(p))i,j∈J1,3K ∈ M3(kP

∗
5 ) such

that

p (xj5 − 1) =

3∑
i=1

(xi5 − 1) bij(p).

(b) The map

rϖ : kP ∗
5 → M3(kP

∗
5 ), p 7→

(
bij(p)

)
i,j∈J1,3K

is an algebra morphism.

Proof. Both (a) and (b) are right-analogues of Lemma 4.2.5. □

Lemma 4.2.7. We have (equality of algebra morphisms kP5
∗ → M3(kP5

∗))

rϖ = Addiag(x15,x25,x35)−1 ◦M3(opP ∗
5
) ◦ t(−) ◦ϖ ◦ opP ∗

5
,

where opP ∗
5
and M3(opP ∗

5
) are given by Definitions A.1 and A.5 respectively.

Proof. Let p ∈ kP ∗
5 and i ∈ J1, 3K. Applying the antimorphism opP ∗

5
to the equality (4.1) enables

us to obtain

opP ∗
5
(p) (x−1

i5 − 1) =

3∑
j=1

(x−1
j5 − 1) opP ∗

5

(
aij(p)

)
.

Set q := opP ∗
5
(p)(−x−1

i5 ). We then have

q (xi5 − 1) =

3∑
j=1

(x−1
j5 − 1) opP ∗

5

(
aij

(
(−x−1

i5 )opP ∗
5
(q)
))

(4.2)

=
3∑

j=1

(xj5 − 1) (−x−1
i5 ) opP ∗

5

(
aij

(
(−x−1

i5 )opP ∗
5
(q)
))

.

Let us evaluate bji := (−x−1
i5 ) opP ∗

5

(
aij

(
(−x−1

i5 )opP ∗
5
(q)
))

for any j ∈ J1, 3K. We have

bji = (−x−1
i5 ) opP ∗

5

(
aij

(
(−x−1

i5 )opP ∗
5
(q)
))

= (−x−1
i5 )opP ∗

5

(
3∑

k=1

aik(−x−1
i5 )akj(opP ∗

5
(q))

)
= (−x−1

i5 )opP ∗
5

(
−x−1

i5 aij(opP ∗
5
(q))

)
= x−1

i5 opP ∗
5
(aij(opP ∗

5
(q))) xi5,

where the first equality comes from the fact that ϖ is an algebra morphism and the second
equality follows from the identity aik(−x−1

i5 ) = −x−1
i5 δik, for any k ∈ J1, 3K. Therefore, in

equality (4.2), we have

q (xi5 − 1) =

3∑
j=1

(xj5 − 1) x−1
i5 opP ∗

5
(aij(opP ∗

5
(q))) xi5.

This implies the equality

rϖ(q) = diag(x15, x25, x35)
−1 M3(opP ∗

5
)
(
t(ϖ(opP ∗

5
(q)))

)
diag(x15, x25, x35),

from which one immediately deduces the equality for p thanks to the bijectivity of the map

p 7→ opP ∗
5
(p)(−x−1

i5 ) = q, for any i ∈ J1, 3K. □

Lemma 4.2.8. We have (equality of algebra morphisms VB → M3(V
B ⊗VB))

rρ = M3(kpr12) ◦ rϖ ◦ kℓ.
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Proof. Recall from [EF1, (7.2.1)] the equality of algebra morphisms VB → M3(V
B ⊗VB):

ρ = M3(kpr12) ◦ϖ ◦ kℓ.
We have

rρ = Addiag(Y1,X1,(X0X1)−1Y −1
1 Y0Y1)−1 ◦M3(opF 2

2
) ◦ t(−) ◦ ρ ◦ opF2

= Addiag(Y1,X1,(X0X1)−1Y −1
1 Y0Y1)−1 ◦M3(opF 2

2
) ◦ t(−) ◦M3(kpr12) ◦ϖ ◦ kℓ ◦ opF2

= Addiag(Y1,X1,(X0X1)−1Y −1
1 Y0Y1)−1 ◦M3(opF 2

2
) ◦M3(kpr12) ◦

t(−) ◦ϖ ◦ kℓ ◦ opF2

= Addiag(pr
12
(x15),pr12(x25),pr12(x35))−1 ◦M3(kpr12) ◦M3(opP ∗

5
) ◦ t(−) ◦ϖ ◦ opP ∗

5
◦ kℓ

= M3(kpr12) ◦Addiag(x15,x25,x35)−1 ◦M3(opP ∗
5
) ◦ t(−) ◦ϖ ◦ opP ∗

5
◦ kℓ

= M3(kpr12) ◦ rϖ ◦ kℓ,
where the third equality comes from identity (A.1), the fourth one from Lemma A.2 applied to
both group morphisms pr

12
and ℓ and the sixth one from Lemma 4.2.7. □

Lemma 4.2.9. The map (VB ⊗VB)⊕3 → MB given by

(4.3) (a1, a2, a3) 7→
3∑

i=1

(xi5 − 1)⊗ ai

is a right (VB ⊗VB)-module isomorphism.

Proof. Recall from Lemma 4.1.3 the right kP ∗
5 -module isomorphism (kP ∗

5 )
⊕3 → ker(kpr

5
). The

left kP ∗
5 -module structure on VB ⊗VB given by Lemma 4.2.2 enables us to apply the functor

−⊗kP ∗
5
(VB ⊗VB) to this isomorphism. This induces a right VB ⊗VB-module isomorphism,

which is given by the announced formula. □

Proof of Proposition 4.2.4. It follows from Lemma 4.2.6 that MB is a (kP ∗
5 ,V

B⊗VB)-bimodule
for the left action given by M3(kpr12) ◦ rϖ, and that the map (4.3) is an isomorphism of

(kP ∗
5 ,V

B⊗VB)-bimodules. Applying the pull-back by the morphism kℓ : VB → kP ∗
5 it follows

that MB is a (VB,VB ⊗ VB)-bimodule for the left action given by M3(kpr12) ◦ rϖ ◦ kℓ, and

that the map (4.3) is an isomorphism of (VB,VB ⊗ VB)-bimodules. This proves the wanted
result since rρ = M3(kpr12) ◦ rϖ ◦ kℓ, thanks to Lemma 4.2.8. □

4.3. A filtration on (VB ⊗VB,VB,MB, rρ). Recall that the group algebra kP ∗
5 is naturally

equipped with a filtration

F0kP ∗
5 = kP ∗

5 and for n ≥ 1, FnkP ∗
5 = InP ∗

5
,

where IP ∗
5
denotes the augmentation ideal of the group algebra kP ∗

5 , which is the k-submodule
of kP ∗

5 generated by the elements p−1, where p ∈ P ∗
5 . The pair (kP

∗
5 , (F

nkP ∗
5 )n∈Z) is an object

of k-algfil. Additionally, recall that the k-module ker(kpr
5
: kP ∗

5 → kF2) is a two-sided ideal

kP ∗
5 , and therefore, a (kP ∗

5 ,kP
∗
5 )-bimodule.

Lemma 4.3.1. For any n ≥ 0, the morphism

Fnkpr
12

: FnkP ∗
5 → Fn(VB ⊗VB)

is surjective.

Proof. The group morphism pr
12

: P ∗
5 → F 2

2 is surjective, since x23 7→ X0, x14 7→ Y0, x34x13x14 7→
X1 and x23x24x34 7→ Y1. This implies the surjectivity of the morphism kpr

12
: kP ∗

5 → kF 2
2 and

then of the induced morphism IP ∗
5
→ IF 2

2
, which in turn implies the surjectivity of the morphism

InP ∗
5
→ In

F 2
2
for any n ≥ 0. □
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Proposition-Definition 4.3.2. A filtration (Fn ker(kpr
5
))n∈Z of the k-module ker(kpr

5
) is

given by

Fn ker(kpr
5
) := FnkP ∗

5 ∩ ker(kpr
5
),

for n ≥ 0. Equipped with this filtration, ker(pr
5
) is a filtered (kP ∗

5 ,kP
∗
5 )-bimodule.

Proof. The first statement follows from the fact that (FnkP ∗
5 )n∈Z is a filtration of kP ∗

5 . The
second statement follows from the fact that (FnkP ∗

5 )n∈Z is a filtration of kP ∗
5 as a (kP ∗

5 ,kP
∗
5 )-

bimodule. □

Recall from Proposition-Definition 4.2.3 the (VB,VB ⊗VB)-bimodule

MB = ker(kpr
5
)⊗kP ∗

5
(VB ⊗VB).

Proposition-Definition 4.3.3. For n ≥ 0, define

FnMB := im
(
Fn ker(kpr

5
) → ker(kpr

5
)⊗kP ∗

5
(VB ⊗VB), x 7→ x⊗ 1

)
.

Then, the pair (MB, (FnMB)n∈Z) is a filtered bimodule over the pair formed by the filtered
algebras (VB, (FnVB)n∈Z) and (VB ⊗VB, (Fn(VB ⊗VB))n∈Z).

Proof. Let m, a, b ≥ 0 and µ ∈ FmMB, α ∈ Fa(VB ⊗VB), β ∈ FbVB.
By definition of FmMB, there exists µ̃ ∈ Fm ker(kpr

5
) such that µ = µ̃⊗ 1. Then

β · µ = kℓ(β)µ̃⊗ 1.

Since kℓ is compatible with filtrations, kℓ(β) ∈ FbkP ∗
5 , which by Proposition-Definition 4.3.2

implies kℓ(β)µ̃ ∈ Fb+m ker(kpr
5
), hence β · µ ∈ Fb+mMB.

Thanks to Lemma 4.3.1, the morphism Fakpr
12

: FakP ∗
5 → Fa(VB ⊗VB) is surjective. This

surjectivity implies the existence of α̃ ∈ FakP ∗
5 such that kpr

12
(α̃) = α. Then

µ · α = µ̃⊗ α = µ̃α̃⊗ 1.

Finally, Proposition-Definition 4.3.2 implies that µ̃α̃ ∈ Fm+a ker(kpr
5
), which implies that

µ · α ∈ Fm+aMB. □

Theorem 4.3.4. The right (VB ⊗ VB)-module isomorphism (VB ⊗ VB)⊕3 → MB given in
(4.3) is an isomorphism of filtered modules with respect to the filtrations given in Lemma 3.3.2
and Proposition-Definition 4.3.3.

Proof. Let us show that for any a ≥ 0, the isomorphism (VB⊗VB)⊕3 → MB induces a bijection

Fa−1(VB ⊗VB)⊕3 ≃ FaMB.

For this, we fix a ≥ 0 and we follow these steps:

Step 1 Let us show that the isomorphism (VB ⊗VB)⊕3 → MB induces an injection

(4.4) Fa−1(VB ⊗VB)⊕3 ↪→ FaMB.

Let (α1, α2, α3) ∈ Fa−1(VB ⊗ VB)⊕3. Thanks to Lemma 4.3.1, the morphism Fa−1kpr
12

:

Fa−1kP ∗
5 → Fa−1(VB ⊗ VB) is surjective. This surjectivity implies the existence of

(α̃1, α̃2, α̃3) ∈ (Fa−1kP ∗
5 )

⊕3 such that Fa−1kpr
12
(α̃i) = αi for any i ∈ {1, 2, 3}. Therefore, the

image of (α1, α2, α3) by the isomorphism (VB ⊗VB)⊕3 → MB is given by

3∑
i=1

(xi5 − 1)⊗ αi =
3∑

i=1

(xi5 − 1)α̃i ⊗ 1.
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By construction, we have

3∑
i=1

(xi5 − 1)α̃i ∈ ker(kpr
5
) ∩FakP ∗

5 = Fa ker(kpr
5
).

The statement then follows.
Step 2 Denote by F3 the free group with three generators. Let us show that there exists a
k-module isomorphism

(4.5) kF3 ⊗ kF2 ≃ kP ∗
5 .

Thanks to [EF1, Lemma 7.9 1)], we have an injective group morphism F3 → P ∗
5 such that

we identify the generators of F3 with x15, x25 and x35. We then have the following split exact
sequence of groups

{1} → F3 → P ∗
5

pr5−−→ F2 → {1},
with splitting ℓ : F2 → P ∗

5 . Applying Proposition C.1(a) to this sequence we obtain a k-module
isomorphism kF3 ⊗ kF2 ≃ kP ∗

5 induced by the bijection2 F3 × F2 → P ∗
5 , (u, u

′) 7→ u · ℓ(u′).
Step 3 Let Θ : F2 → Aut(F3) be the group morphism given by h 7→

(
Θh : x 7→ ℓ(h) x ℓ(h)−1

)
.

Let us show that

(4.6) Θab
h = idF ab

3
,∀h ∈ F2.

Since Θ is a group morphism, it suffices to show identity (4.6) for h = X0 and h = X1 and
since ΘXi (i ∈ {0, 1}) is a group morphism, it suffices to evaluate at the generators of F3. One
has

ΘX0(xj5) = x23xj5x
−1
23 and ΘX1(xj5) = x12xj5x

−1
12

for j ∈ {1, 2, 3}. The injection F3 ↪→ P ∗
5 enables us to evaluate these identities in P ∗

5 . Further-
more, thanks to [EF1, Lemma 7.3], one may compute these identities in K5. We will abusively
use the same notations for the generators of P ∗

5 and K5. One has

ΘX0(x15) = x23x15x
−1
23 = x15,

where the last equality follows from the fact that one has from [EF1, (7.1.3)] that (x15, x23) = 1
in K5. Next, one has

ΘX0(x25) = x23x25x
−1
23 = x23x25x

−1
35 x35x

−1
23 = x−1

35 x23x25x35x
−1
23 = x−1

35 x25x35x23x
−1
23 = x−1

35 x25x35,

where the third equality follows from the fact that (x23x25, x
−1
35 ) = 1 and the fourth one from

(x23, x25x35) = 1; with both identities in K5 being a consequence of [EF1, (7.1.2)]. Next, one
has

ΘX0(x35) = x23x35x
−1
23 = x23(x25x35)

−1x25x35x35x
−1
23 = (x25x35)

−1x23x25x35x35x
−1
23

= (x25x35)
−1x35x23x25x35x

−1
23 = (x25x35)

−1x35x25x35x23x
−1
23 = (x25x35)

−1x35x25x35,

where the third equality follows from the fact that (x23, (x25x35)
−1) = 1, the fourth one from

(x23x25x35, x35) = 1 and the fifth one from (x23, x25x35) = 1; with both identities in K5 being
a consequence of [EF1, (7.1.2)]. Next, one has

ΘX1(x15) = x12x15x
−1
12 = x12x15x

−1
25 x25x

−1
12 = x−1

25 x12x15x25x
−1
12 = x−1

25 x15x25x12x
−1
12 = x−1

25 x15x25,

where the third equality follows from the fact that (x12x15, x
−1
25 ) = 1 and the fourth one from

(x12, x15x25) = 1; with both identities in K5 being a consequence of [EF1, (7.1.2)]. Next, one

2One may also refer to [EF1, Lemma 7.9. 2)].
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has

ΘX1(x25) = x12x25x
−1
12 = x12(x15x25)

−1x15x25x25x
−1
12 = (x15x25)

−1x12x15x25x25x
−1
12

= (x15x25)
−1x25x12x15x25x

−1
12 = (x15x25)

−1x25x15x25x12x
−1
12 = (x15x25)

−1x25x15x25,

where the third equality follows from the fact that (x12, (x15x25)
−1) = 1, the fourth one from

(x12x15x25, x25) = 1 and the fifth one from (x12, x15x25) = 1; with both identities in K5 being
a consequence of [EF1, (7.1.2)]. Next, one has

ΘX1(x35) = x12x35x
−1
12 = x35,

where the last equality follows from the fact that one has from [EF1, (7.1.3)] that (x12, x35) = 1
in K5. This implies that

Θab
X0

(xab15) = xab15 Θab
X1

(xab15) = (x−1
25 x15x25)

ab = xab15

Θab
X0

(xab25) = (x−1
35 x25x35)

ab = xab25 Θab
X1

(xab25) = ((x15x25)
−1x25x15x25)

ab = xab25

Θab
X0

(xab35) = ((x25x35)
−1x35x25x35)

ab = xab35 Θab
X1

(xab35) = xab35 .

This proves that Θab
Xi

= idF ab
3

for i ∈ {0, 1}, which establishes statement (4.6).

Step 4 Let us show the equalities

(4.7)
∑

b+c=a
b>0

Fb kF3 ⊗Fc kF2 =

( ∑
b+c=a

IbF3
⊗ IcF2

)
∩ (IF3 ⊗ kF2)

and

(4.8) Fa ker(kpr
5
) = FakP ∗

5 ∩ ker(kpr
5
) = IaP ∗

5
∩ ker(kpr

5
).

Equality (4.8) is immediate. Let us prove equality (4.7). The inclusion (⊂) being immediate,

let us prove the converse. Indeed, let x =
∑

b+c=a

xb,c ∈ IF3 ⊗ kF2 with xb,c ∈ IbF3
⊗ IcF2

. Since

x ∈ IF3 ⊗ kF2, it follows that εF3 ⊗ idkF2(x) = 0. Therefore,∑
b+c=a

εF3 ⊗ idkF2(xb,c) = 0.

Since εF3 ⊗ idkF2(xb,c) = 0 for b > 0, it follows from this equality that εF3 ⊗ idkF2(x0,a) = 0,
which implies that x0,a ∈ IF3 ⊗ IaF2

, thus

x =
∑

b+c=a

xb,c ∈
∑

b+c=a
b>0

IbF3
⊗ IcF2

.

This concludes the proof of equality (4.7).
Step 5 Let us show that the isomorphism (4.5) induces the following isomorphism

(4.9)
∑

b+c=a
b>0

Fb kF3 ⊗Fc kF2 ≃ Fa ker(kpr
5
).

First, as in the proof of [EF1, Lemma 7.10], one checks that the commutativity of the diagram

kF3 ⊗ kF2 kP ∗
5

kF2

(4.5)

εF3
⊗idkF2

kpr
5
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implies that the isomorphism (4.5) induces an isomorphism

(4.10) IF3 ⊗ kF2 ≃ ker(kpr
5
).

Second, identity (4.6) enables us to apply Proposition C.1(b). From this, one deduces that the
isomorphism (4.5) gives rise to an isomorphism

(4.11)
∑

b+c=a

IbF3
⊗ IcF2

≃ IaP ∗
5
.

It follows from (4.10) and (4.11) that the isomorphism (4.5) induces an isomorphism between
the intersection of the left-hand sides and the right-hand sides of these isomorphisms. These
intersections are respectively given by (4.7) and (4.8), which implies the announced statement.
Step 6 Let us show that

(4.12) Fa ker(kpr
5
) =

3∑
i=1

(xi5 − 1)Fa−1kP ∗
5 .

Recall that IbF3
=

3∑
i=1

(xi5 − 1)Ib−1
F3

. This implies

(4.13)
∑

b+c=a
b>0

Fb kF3⊗Fc kF2 =
3∑

i=1

(xi5−1)
∑

b+c=a−1

Fb kF3⊗Fc kF2 ≃
3∑

i=1

(xi5−1)Fa−1kP ∗
5 ,

where the isomorphism is obtained from (4.11) by replacing a with a − 1. Finally, equality
(4.12) follows from (4.9) and (4.13).

Finally, one deduces that the map Fa−1(VB ⊗ VB)⊕3 → FaMB is injective from (4.4) and
surjective from (4.12), thus proving the theorem. □

4.4. De Rham geometric material. Let t4 be the infinitesimal braid Lie algebra with four
strands, that is, the Lie algebra presented by generators t12, t13, t14, t23, t24 and t34 which satisfy
the following relations

(i) [tij , tik + tjk] = 0 for i < j < k ∈ J1, 4K.
(ii) [tij , tkl] = 0 for i < j, k < l ∈ J1, 4K such that {i, j} ∩ {k, l} = ∅.

Let z4 := t12 + t13 + t23 + t14 + t24 + t34. One checks that z4 is a generator of the Lie algebra
Z(t4). One then defines

p5 := t4/Z(t4) = t4/(z4).

We shall abusively use the same notation the generators of t4 and their classes in p5.

Lemma 4.4.1 ([EF1, Sec 5.1.2]). (a) There are Lie algebra morphisms pr1,pr2,pr5 : p5 → f2
given by

t t12 t13 t14 t23 t24 t34

pr
1
(t) 0 0 0 e0 e∞ e1

pr
2
(t) 0 e∞ e0 0 0 e1

pr
5
(t) e1 e∞ e0 e0 e∞ e1

(b) There is a Lie algebra morphism ℓ : f2 → p5 given by e0 7→ t23 and e1 7→ t12. It is such that
pr5 ◦ ℓ = idf2.

Definition 4.4.2. Define pr12 : p5 → f⊕2
2 to be the Lie algebra morphism p 7→ (pr1(p),pr2(p)).

We assign to this Lie algebra morphism and to each Lie algebra morphism of Lemma 4.4.1 the
following morphisms of k-alg:
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(a) For j ∈ {1, 2, 5}, U(prj) : U(p5) → VDR; (b) U(pr12) : U(p5) → (VDR)⊗2;

(c) U(ℓ) : VDR → U(p5).

Recall that ker(U(pr5)) is a two-sided ideal of U(p5). This induces, in particular, a natural right
U(p5)-module structure on ker(U(pr5)).

Lemma 4.4.3. The map U(p5)
⊕3 → ker(U(pr5)) given by (p1, p2, p3) 7→ t15p1 + t25p2 + t35p3

is a right U(p5)-module isomorphism, where t15, t25 and t35 given by t15 := −t12 − t13 − t14,
t25 := −t12 − t23 − t24 and t35 := −t12 − t13 − t14 freely generate ker(U(pr5)).

Proof. This is analogous to [EF1, Lemma 5.5]. The two-sided ideal nature of ker(U(pr5)) enables
one to replace left actions by right actions in this proof. □

4.5. A De Rham graded bimodule (VDR ⊗VDR,VDR,MDR, rρ).

Lemma 4.5.1. The graded algebra morphism U(ℓ) : VDR → U(p5) equips the graded k-
submodule ker(U(pr5)) of U(p5) with a graded (VDR, U(p5))-bimodule structure.

Proof. Recall that the graded k-submodule ker(U(pr5)) of U(p5) is a two-sided ideal of U(p5).
This naturally equips it with a graded (U(p5), U(p5))-bimodule structure. Pulling back this
structure by the graded algebra morphism U(ℓ) : VDR → U(p5), one equips ker(U(pr5)) with
the structure of a graded (VDR, U(p5))-bimodule. Its graded right module structure is that of
ker(U(pr5)), and its compatible graded left module structure is given by

VDR U(ℓ)−−−→ U(p5) → EndU(p5)∗-rmod(ker(U(pr5))),

where the second arrow is given by the graded left U(p5)-module structure of ker(U(pr5)). □

Lemma 4.5.2. The graded algebra morphism U(pr12) : U(p5) → VDR⊗VDR equips the graded
k-module VDR ⊗VDR with a graded (U(p5),V

DR ⊗VDR)-bimodule structure.

Proof. It is immediate that the graded algebra VDR⊗VDR is naturally a graded right (VDR⊗
VDR)-module. On the other hand, let us consider the composition

U(p5)
U(pr12)−−−−−→ VDR ⊗VDR ≃ End(VDR⊗VDR)-rmod(V

DR ⊗VDR),

where the End(VDR⊗VDR)-rmod(V
DR ⊗VDR) ≃ VDR ⊗VDR is the graded algebra isomorphism

given by the evaluation at 1 as in Proposition-Definition 2.3.2. This equips VDR ⊗VDR with a
compatible graded left U(p5)-module structure. □

Proposition-Definition 4.5.3. The graded (VDR, U(p5))-bimodule ker(U(pr5)) and the graded
(U(p5),V

DR ⊗VDR)-bimodule VDR ⊗VDR define a graded (VDR,VDR ⊗VDR)-bimodule

MDR := ker(U(pr5))⊗U(p5) (V
DR ⊗VDR).

More explicitly, the graded left VDR-module structure on MDR is given by

rρ : VDR → End(VDR⊗VDR)-rmod(M
DR), v 7→ (p⊗ w 7→ U(ℓ)(v)p⊗ w) .

Proof. This follows from Lemmas 4.5.1 and 4.5.2 and Proposition 2.1.4. □

The remainder of this paragraph is dedicated to the proof of the following result:

Theorem 4.5.4. The graded bimodules

(VDR ⊗VDR,VDR,MDR, rρ) and (VDR ⊗VDR,VDR, (VDR ⊗VDR)⊕3, rρ)

are isomorphic.
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To prove the theorem, we first establish that the graded algebra morphism

rρ : VDR → M3(V
DR ⊗VDR)

is related to the geometric material introduced in Sec. 4.4.

Lemma 4.5.5 ([EF1, Lemma 4.1 and Sec. 5.2.2]). (a) For any p ∈ U(p5), there is a unique
matrix (aij(p))i,j∈J1,3K ∈ M3(U(p5)) such that

(4.14) ti5 p =
3∑

i=1

aij(p) tj5.

(b) The map

ϖ : U(p5) → M3(U(p5)), p 7→ (aij(p))i,j∈J1,3K

is a graded algebra morphism.

Lemma 4.5.6. (a) For any p ∈ U(p5), there is a unique matrix (bij(p))i,j∈J1,3K ∈ M3(U(p5))
such that

p tj5 =
3∑

i=1

ti5 bij(p).

(b) The map

rϖ : U(p5) → M3(U(p5)), p 7→ (bij(p))i,j∈J1,3K

is a graded algebra morphism.

Proof. Both (a) and (b) are right-analogues of Lemma 4.5.5. □

Lemma 4.5.7. We have (equality of graded algebra morphisms U(p5) → M3(U(p5)))

rϖ = M3(Sp5) ◦ t(−) ◦ϖ ◦ Sp5 ,

where Sp5 and M3(Sp5) are given by Definitions A.3 and A.5 respectively.

Proof. Let p ∈ U(p5) and i ∈ J1, 3K. Applying the antimorphism Sp5 to the equality (4.14)
enables us to obtain

Sp5(p) ti5 =

3∑
j=1

tj5 Sp5 (aij(p)) .

Set q := Sp5(p). Since Sp5 is an involution, it follows that Sp5(q) = p. We then have

q ti5 =

3∑
j=1

tj5 Sp5 (aij(Sp5(q))) .

Setting bji = Sp5 (aij(Sp5(q))), this implies the equality

rϖ(q) = M3(Sp5)
(
t(ϖ(Sp5(q)))

)
,

from which one immediately deduces the equality for p thanks to the bijectivity of Sp5 . □

Lemma 4.5.8. We have (equality of graded algebra morphisms VDR → M3(V
DR ⊗VDR))

rρ = M3(U(pr12)) ◦ rϖ ◦ U(ℓ).

Proof. Recall from [EF1, (5.2.5)] that we have the following equality of graded algebra morphisms
VDR → M3(V

DR ⊗VDR):

ρ = M3(U(pr12)) ◦ϖ ◦ U(ℓ).
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Therefore,

rρ = M3(Sf⊕2
2
) ◦ t(−) ◦ ρ ◦ Sf2 = M3(Sf⊕2

2
) ◦ t(−) ◦M3(U(pr12)) ◦ϖ ◦ U(ℓ) ◦ Sf2

= M3(Sf⊕2
2
) ◦M3(U(pr12)) ◦ t(−) ◦ϖ ◦ U(ℓ) ◦ Sf2

= M3(U(pr12)) ◦M3(Sp5) ◦ t(−) ◦ϖ ◦ Sp5 ◦ U(ℓ)

= M3(U(pr12)) ◦ rϖ ◦ U(ℓ),

where the third equality comes from identity (A.1), the fourth one from Lemma A.4 applied to
both Lie algebra morphisms pr12 and ℓ and the last one from Lemma 4.5.7. □

Lemma 4.5.9. The map (VDR ⊗VDR)⊕3 → MDR given by

(4.15) (a1, a2, a3) 7→
3∑

i=1

ti5 ⊗ ai

is a graded right (VDR ⊗VDR)-module isomorphism.

Proof. Consider the graded right U(p5)-module isomorphism U(p5)
⊕3 → ker(U(pr5)) of Lemma

4.4.3. The graded left U(p5)-module structure on VDR⊗VDR given by Lemma 4.5.2 enables us
to apply the functor −⊗U(p5) (V

DR ⊗VDR) to this isomorphism. This induces a graded right

(VDR ⊗VDR)-module isomorphism, which is given by the announced formula. □

Proof of Theorem 4.5.4. It follows from Lemma 4.5.6 that

MDR = ker(U(pr5))⊗U(p5) (V
DR ⊗VDR)

is a graded (U(p5),V
DR ⊗VDR)-bimodule for the left action given by M3(U(pr12)) ◦ rϖ, and

that the map (4.15) is an isomorphism of graded (U(p5),V
DR⊗VDR)-bimodules. Applying the

pullback by the graded algebra morphism U(ℓ) : VDR → U(p5) it follows that M
DR is a graded

(VDR,VDR ⊗ VDR)-bimodule for the left action given by M3(U(pr12)) ◦ rϖ ◦ U(ℓ), and that
the map (4.15) is an isomorphism of graded (VDR,VDR ⊗ VDR)-bimodules. This proves the
wanted result since rρ = M3(U(pr12)) ◦ rϖ ◦ U(ℓ), thanks to Lemma 4.5.8. □

4.6. The isomorphism of bimodules gr(MB) ≃ MDR. Recall from Proposition-Definition
4.3.3 that MB is equipped with a filtered k-module structure. This defines the associated graded
k-module gr(MB). We construct a graded k-module morphism MDR → MB. Let us start with
the following lemmas:

Lemma 4.6.1. For n ∈ Z, we have

(a) grn ker(kpr5) ≃ ker(grn(kpr5));

(b) grn ker(kpr12) ≃ ker(grn(kpr12)).

Proof. This follows immediately from Lemma C.2 applied to the group morphisms pr
5
: P ∗

5 → F2

and pr
12

: P ∗
5 → F 2

2 respectively. □

Lemma 4.6.2. (a) There exists a left U(p5)-module isomorphism

MDR ≃ ker(U(pr5))
/
ker(U(pr5)) · ker(U(pr12));

(b) There exists a left kP ∗
5 -module isomorphism

MB ≃ ker(kpr
5
)
/
ker(kpr

5
) · ker(kpr

12
).

Proof. This follows from Proposition 2.1.5 with

(A,B,φ,M) = (VDR ⊗VDR, U(p5), U(pr12), ker(U(pr5)))

(resp. (A,B,φ,M) = (VB ⊗VB,kP ∗
5 ,kpr12, ker(kpr5))). □
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Proposition 4.6.3. There exists a k-module morphism MDR → gr(MB) such that

ei5 ⊗ 1 7→ [xi5 − 1]1 ⊗ 1, for i ∈ {1, 2, 3},

and is compatible with the right actions and the k-algebra morphism VDR ⊗VDR → gr(VB ⊗
VB).

Proof. We will follow these steps:

Step 1 Construction of a k-module morphism

(4.16)
⊕
n∈Z

Fn ker(kpr
5
)

Fn+1 ker(kpr
5
) +

∑
a+b=n

Fa ker(kpr
5
) ·Fb ker(kpr

12
)
−→ gr(MB),

with compatible right actions.
Applying the functor gr to Lemma 4.6.2 (b), we obtain

(4.17) gr
(
MB

)
≃ gr

(
ker(kpr

5
)
/
ker(kpr

5
) · ker(kpr

12
)
)
.

Moreover, we have the equality

gr
(
ker(kpr

5
)
/
ker(kpr

5
) · ker(kpr

12
)
)
=
⊕
n∈Z

Fn ker(kpr
5
)

Fn+1 ker(kpr
5
) +Fn ker(kpr

5
) ∩
(
ker(kpr

5
) · ker(kpr

12
)
) .

One therefore obtains a k-module morphism
(4.18)⊕

n∈Z

Fn ker(kpr
5
)

Fn+1 ker(kpr
5
) +

∑
a+b=n

Fa ker(kpr
5
) ·Fb ker(kpr

12
)
→ gr

(
ker(kpr

5
)
/
ker(kpr

5
) · ker(kpr

12
)
)

given by taking the class of an element of Fn ker(kpr
5
) in the source module to the class of the

same element in the target module. The morphism (4.16) is then constructed by composition
of (4.18) and (4.17).

The target of the k-module morphism (4.16) is a right module over gr
(
kP ∗

5 / ker(kpr12)
)
, while

the source is a right module over⊕
m∈Z

FmkP ∗
5

Fm ker(kpr
12
) +Fm+1kP ∗

5

= gr (kP ∗
5 )
/
gr
(
ker(kpr

12
)
)
.

The k-module morphism (4.16) is then compatible with these right actions and the morphism

(4.19) gr (kP ∗
5 )
/
gr
(
ker(kpr

12
)
)
→ gr

(
kP ∗

5 / ker(kpr12)
)
,

which is an isomorphism since the filtration of ker(kpr
12
) is induced by that of kP ∗

5 .
Step 2 Construction of a k-module isomorphism

(4.20)
⊕
n∈Z

Fn ker(kpr
5
)

Fn+1 ker(kpr
5
) +

∑
a+b=n

Fa ker(kpr
5
) ·Fb ker(kpr

12
)
≃ MDR,

with compatible right actions.
Thanks to Lemma C.3 applied to φ = pr

5
and ψ = pr

12
, and to Lemma 4.6.1, we have

(4.21)⊕
n∈Z

Fn ker(kpr
5
)

Fn+1 ker(kpr
5
) +

∑
a+b=n

Fa ker(kpr
5
) ·Fb ker(kpr

12
)
≃
⊕
n∈Z

ker(grn(kpr5))∑
a+b=n

ker(gra(kpr5)) · ker(grb(kpr12))
.
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The source (resp. target) is a right module over the k-algebra gr (kP ∗
5 )
/
gr
(
ker(kpr

12
)
)
(resp.

gr (kP ∗
5 )
/
ker
(
gr(kpr

12
)
)
) and the isomorphism (4.21) is compatible with the k-algebra mor-

phism

(4.22) gr (kP ∗
5 )
/
gr
(
ker(kpr

12
)
)
→ gr (kP ∗

5 )
/
ker
(
gr(kpr

12
)
)
,

which is an isomorphism by Lemma C.2.
Next, we have the equality⊕

n∈Z

ker(grn(kpr5))∑
a+b=n

ker(gra(kpr5)) · ker(grb(kpr12))
=

ker(gr(kpr
5
))

ker(gr(kpr
5
)) · ker(gr(kpr

12
))
.

Thanks to Proposition 2.1.5 applied to M = ker(gr(kpr
5
)), B = gr(kP ∗

5 ) and A = gr(kF 2
2 ),

using the surjectivity of φ = gr(kpr
12
) : gr(kP ∗

5 ) → gr(kF 2
2 ), which follows from surjectivity of

pr12 : P
∗
5 → F 2

2 ; it follows that

(4.23)
ker(gr(kpr

5
))

ker(gr(kpr
5
)) · ker(gr(kpr

12
))

≃ ker(gr(kpr
5
))⊗gr(kP ∗

5 )
gr(kF 2

2 ).

This k-module isomorphism is compatible with the right actions and k-algebra morphism

(4.24) gr (kP ∗
5 )
/
ker
(
gr(kpr

12
)
)
→ gr(kF 2

2 ),

which is an isomorphism by the surjectivity of gr(kpr
12
).

Finally, thanks to the graded k-algebra isomorphisms U(p5) ≃ gr(kP ∗
5 ) and U(f2) ≃ gr(kF2),

and the commutativity of the diagrams

gr(kP ∗
5 ) gr(kF2)

U(p5) U(f2)

gr(kpr
5
)

≃ ≃
U(pr5)

and

gr(kP ∗
5 ) gr(kF 2

2 )

U(p5) U(f⊕2
2 )

gr(kpr
12
)

≃ ≃

U(pr12)

we obtain the following graded k-module isomorphism

(4.25) ker(gr(kpr
5
))⊗gr(kP ∗

5 )
gr(kF 2

2 ) ≃ ker(U(pr
5
))⊗U(p5) U(f⊕2

2 ) = MDR,

which is compatible with the right actions and the algebra isomorphism

(4.26) gr(kF 2
2 ) → U(f⊕2

2 ).

The announced isomorphism (4.20) is then constructed by composition of (4.21), (4.23) and
(4.25). It is compatible with the right actions and the k-algebra isomorphism

(4.27) gr (kP ∗
5 )
/
gr
(
ker(kpr

12
)
)
→ U(f⊕2

2 )

obtained by the composition of (4.22), (4.24) and (4.26).
Step 3 Conclusion.
Composing the morphisms (4.16) and 4.20 from Step 1 and Step 2 respectively we obtain a
k-module morphism

(4.28) MDR ≃
⊕
n∈Z

Fn ker(kpr
5
)

Fn+1 ker(kpr
5
) +

∑
a+b=n

Fa ker(kpr
5
) ·Fb ker(kpr

12
)
→ gr(MB).



36 BENJAMIN ENRIQUEZ AND KHALEF YADDADEN

Finally, one may check that this morphism sends the element ei5 ⊗ 1 ∈ MDR to the element
[xi5 − 1]1 ⊗ 1 ∈ gr(MB), for i ∈ {1, 2, 3}; and that it is also compatible with the right actions
and the k-algebra morphism

VDR ⊗VDR → gr(VB ⊗VB),

which coincides with the composition of morphisms (4.19) and (4.27).

□

Theorem 4.6.4. The graded module morphism MDR → gr(MB) induces a bimodule isomor-
phism

(VDR ⊗VDR,VDR,MDR, rρ) ≃ (gr(VB ⊗VB), grVB, gr(MB), gr(rρ)).

Proof. Recall the following isomorphisms:

• (VDR ⊗ VDR)⊕3 ≃ MDR is a right (VDR ⊗ VDR)-module isomorphism and is given by
Theorem 4.5.4;

• gr(VB ⊗VB)⊕3 ≃ gr(MB) is a right gr(VB ⊗VB)-module isomorphism and is given by the
filtered bimodule isomorphism of Proposition 4.2.4 to which one applies the functor gr;

• (VDR ⊗ VDR)⊕3 ≃ gr(VB ⊗ VB)⊕3 is a right module isomorphism over the isomorphism
gr(VB)⊗ gr(VB) ≃ VDR ⊗VDR and is given by Proposition 3.4.6.

Let us show that the following diagram

(4.29)

(VDR ⊗VDR)⊕3 gr(VB ⊗VB)⊕3

MDR gr(MB)

≃

≃ ≃

commutes. To do so it is sufficient to show that the morphisms

(VDR ⊗VDR)⊕3 → gr(VB ⊗VB)⊕3 → gr(MB) and (VDR ⊗VDR)⊕3 → MDR → gr(MB)

are equal as right module morphisms over the isomorphism gr(VB ⊗ VB) ≃ VDR ⊗ VDR.
Therefore, it suffices to check this equality on the generators of (VDR ⊗ VDR)⊕3 as a right
(VDR ⊗VDR)-module. Denote by u1, u2, u3 ∈ (VDR ⊗VDR)⊕3 the canonical generators. For
i ∈ {1, 2, 3}, the images of these elements by the above compositions are respectively given by

ui 7→ ũi 7→ [xi5 − 1]1 ⊗ 1 and ui 7→ ei5 ⊗ 1 7→ [xi5 − 1]1 ⊗ 1,

where ũ1, ũ2, ũ3 are the canonical generators of the right gr(VB⊗VB)-module gr(VB⊗VB)⊕3.
Finally, the morphism MDR → gr(MB) is indeed an isomorphism since all other arrows of the
commutative diagram (4.29) are isomorphisms. □

4.7. Geometric construction of the bimodules with factorization structures OB, OB
fil

and ODR.

Proposition-Definition 4.7.1. Define the compositions

r : MB ≃ (VB ⊗VB)⊕3 rrow−−−→ VB ⊗VB and c : VB ⊗VB rcol−−→ (VB ⊗VB)⊕3 ≃ MB,

where (VB ⊗VB)⊕3 ≃ MB is the right (VB ⊗VB)-module isomorphism given in (4.3). Then
the tuple

OB := (VB ⊗VB,VB,MB, rρ, X1 − 1, r, c)

is an object of k-BFS.
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Proof. Thanks to Corollary 3.1.4 and Proposition 4.2.4, the result follows from Proposition 2.1.6
applied to

(A,B,M, ρ, e, r, c) = (VB ⊗VB,VB, (VB ⊗VB)⊕3, rρ,X1 − 1, rrow, rcol)

and
(A′,B′,M′, ρ′) = (VB ⊗VB,VB,MB, rρ).

□

Recall from (3.6) and Lemma 3.3.1 that VB and VB ⊗VB are objects of k-algfil.

Corollary 4.7.2. The filtration given in Proposition-Definition 4.3.3 define a filtered structure
on OB, which defines an object OB

fil of the category k-BFSfil.

Proof. Thanks to Corollary 3.3.4 and Theorem 4.3.4, the result follows from Proposition 2.1.15
applied to OB

mat,fil and (VB ⊗VB,VB,MB, rρ). □

Recall from Sec 3.4 that VDR and VDR ⊗VDR are objects of k-alggr.

Proposition-Definition 4.7.3. Define the compositions

r : MDR ≃ (VDR⊗VDR)⊕3 rrow−−−→ VDR⊗VDR and c : VDR⊗VDR rcol−−→ (VDR⊗VDR)⊕3 ≃ MDR,

where (VDR⊗VDR)⊕3 ≃ MDR is the right (VDR⊗VDR)-module isomorphism given in (4.15).
The tuple

ODR := (VDR ⊗VDR,VDR,MDR, rρ, e1, r, c)

is an object of k-BFSgr.

Proof. Thanks to Corollary 3.4.5 and Theorem 4.5.4, the result follows from Proposition 2.1.22
applied to

(A,B,M, ρ, e, r, c) = (VDR ⊗VDR,VDR, (VDR ⊗VDR)⊕3, rρ, e1, rrow, rcol)

and
(A′,B′,M′, ρ′) = (VDR ⊗VDR,VDR,MDR, rρ).

□

Appendix A. The morphisms opG, Sg and the functor Mt,s

Definition A.1. For a group G, define opG to be the group algebra antiautomorphism of kG
given by g 7→ g−1 for any g ∈ G.

Lemma A.2. If φ : G → H is a group morphism, then the algebra morphisms kφ : kG → kH
satisfies (equality of algebra antimorphisms kG→ kH)

kφ ◦ opG = opH ◦ kφ.

Proof. It suffices to check the equality for any g ∈ G. We have

kφ ◦ opG(g) = kφ(g−1) = φ(g)−1 = opH(φ(g)) = opH ◦ kφ(g),
where the middle equality follows from the group morphism status of φ. □

Definition A.3. For a k-Lie algebra g, define Sg to be the k-algebra antiautomorphism of the
universal enveloping algebra U(g) given by x 7→ −x for any x ∈ g.

Lemma A.4. If ϕ : g → h is a k-Lie algebra morphism, then the k-algebra morphisms U(ϕ) :
U(g) → U(h) satisfies (equality of algebra antimorphisms U(g) → U(h))

U(ϕ) ◦ Sg = Sh ◦ U(ϕ).
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Proof. It suffices to check the equality for any x ∈ g. We have

U(ϕ) ◦ Sg(x) = U(ϕ)(−x) = −ϕ(x) = Sh(ϕ(x)) = Sh ◦ U(ϕ)(x).

□

Definition A.5. Let f : E → F be a k-module morphism. For s, t ∈ Z>0, define

Mt,s(f) : Mt,s(E) → Mt,s(F )

to be the k-module morphism that transforms matrices over E to matrices over F by applying
f element-wise.

Let f : E → F be a k-module morphism. For s, t ∈ Z>0 and M ∈ Mt,s(E) it is immediate that

(A.1) tMt,s(f)(M) = Ms,t(f)(
tM),

where t(−) denotes the transposition of matrices. Assuming that the map f is an algebra
antimorphism, one checks that for s, n, t ∈ Z>0 and M ∈ Mt,n(E), M ′ ∈ Mn,s(E) we have

(A.2) t
(
Mt,s(f)(MM ′)

)
= t
(
Mn,s(f)(M

′)
)
t (Mt,n(f)(M)) ,

Appendix B. A lemma on cokernels

Lemma B.1. Let α : A ↠ C and β : B ↠ D be two surjective k-module morphisms such that
there exists a pair of k-module morphisms f : A → B and g : C → D such that the following
diagram

(B.1)

A C

B D

α

f g

β

commutes. Then, the morphism β induces a k-module isomorphism

coker(f)/ ker(β) ≃ coker(g).

Proof. Taking the vertical cokernels of diagram (B.1), it follows that there exists a unique k-
module morphism coker(f) → coker(g) such that the following diagram

(B.2)

B D

coker(f) coker(g)

β

commutes, where the vertical maps are the canonical projections. On the other hand, the map
ker(β) → coker(f) obtained by the composition

ker(β) ↪→ B ↠ coker(f)

is such that the composition

ker(β) → coker(f) → coker(g)

is zero. Indeed, thanks to diagram (B.2), this map is equal to the composition

ker(β) ↪→ B
β−→ D ↠ coker(g),

which is in fact zero. The wanted statement is equivalent to the exactness of the the sequence

ker(β) → coker(f) → coker(g) → {0},
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which we now prove. The surjectivity of coker(f) → coker(g) immediately follows from the
surjectivity of β and the commutativity of diagram (B.2). Let us now prove that

im(ker(β) → coker(f)) = ker(coker(f) → coker(g)).

We have

(B.3) im(ker(β) → coker(f)) =
ker(β) + im(f)

im(f)
≃ ker(β)

ker(β) ∩ im(f)

and

(B.4) ker(coker(f) → coker(g)) =
{b ∈ B | β(b) ∈ im(g)}

im(f)
.

The commutative square of inclusions

ker(β) ∩ im(f) im(f)

ker(β) {b ∈ B | β(b) ∈ im(g)}

gives rise to an injection

(B.5)
ker(β)

ker(β) ∩ im(f)
↪→ {b ∈ B | β(b) ∈ im(g)}

im(f)

Let us prove its surjectivity. Let b ∈ B such that β(b) ∈ im(g). Let then c ∈ C be such that
β(b) = g(c). Since α : A→ C is surjective, there exists a ∈ A such that c = α(a). It follows that

β(b) = g ◦ α(a) = β ◦ f(a),
where the last equality follows from the commutativity of diagram (B.1). We then have

b− f(a) ∈ ker(β).

The image of the class of b− f(a) under (B.5) is the class of b− f(a) in the target of (B.5), which
is equal to the class of b, thus proving the surjectivity of (B.5). Finally, it follows from (B.3) and
(B.4) that the map im(ker(β) → coker(f)) = ker(coker(f) → coker(g)) is an isomorphism. □

Appendix C. Some results on group algebras

Proposition C.1. Let

{1} → F
ι−→ G

π−→ H → {1}
be a split exact sequence of groups with splitting σ : H → G. Denote by Θ : H → Aut(F ) the
group morphism given by H ∋ h 7→ Θh ∈ Aut(F ) where

Θh : x 7→ ι−1
(
σ(h)ι(x)σ(h)−1

)
Then

(a) The composition Φ : kF⊗kH
kι⊗kσ−−−−→ kG⊗kG→ kG is an isomorphism of left kF -modules,

where kG⊗ kG→ kG is the product of the group algebra kG.
(b) Assume that for any h ∈ H, Θab

h = idF ab (where (−)ab is the abelianization functor).
Then, for any n ≥ 0, the morphism Φ : kF ⊗ kH → kG induces an isomorphism of left
kF -modules ∑

a+b=n

IaF ⊗ IbH ≃ InG.

Proof. (a) This follows from the fact that the map F ×H → G given by (x, h) 7→ ι(x)σ(h) is
a bijection with reciprocal given by g 7→

(
ι−1
(
g σ(π(g))−1

)
, π(g)

)
.
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(b) Let n ≥ 0. Let us show that Φ

( ∑
a+b=n

IaF ⊗ IbH

)
= InG by following these steps:

Step 1 Let us show that

Φ

( ∑
a+b=n

IaF ⊗ IbH

)
⊂ InG.

Indeed, for any a, b ≥ 0 such that a+ b = n, we have

Φ(IaF ⊗ IbH) ⊂ kι(IaF )kσ(I
b
H) = kι(IF )

akσ(IH)b ⊂ IaGI
b
G = InG,

where the last inclusion follows from the fact group algebra morphisms preserve augmen-
tation ideals. Therefore, we obtain the announced inclusion.
Step 2 Let h ∈ H. Let us show that for any a ≥ 0 we have

gra(kΘh) = idIaF /Ia+1
F

.

By assumption on Θh, for x ∈ F , we have that πabF (Θh(x)) = πabF (x), where πabF : F ↠ F ab

is the canonical projection. Therefore, there exists u ∈ (F, F ) such that Θh(x) = xu, then
(equality in IF )

kΘh(x− 1) = (x− 1) + (u− 1) + (x− 1)(u− 1)

It is immediate that (x− 1)(u− 1) ∈ I2F and thanks to [Wei, Exercise 6.1.4] we also have
u− 1 ∈ I2F since u ∈ (F, F ). Hence, (equality in gr1(kF ) = IF /I

2
F )

(C.1) gr1(kΘh)([x− 1]1) = [x− 1]1.

Recall that the k-module morphism kΘh is a filtered algebra automorphism of kF which
implies that gr(kΘh) is a graded algebra automorphism of gr(kF ). Since the algebra
gr(kF ) is generated by gr1(kF ), equality C.1 implies that

gr(kΘh) = idgr(kF ),

thus proving the wanted identity.
Step 3 Let a, b ≥ 0 such that a+ b = n. Let g ∈ G.

(i) Thanks to the proof of (a), there exists a unique (x, h) ∈ F × H such that g =
ι(x)σ(h).

(ii) Thanks to the proof of Step 1, we define the k-module morphism Φa,b : I
a
F⊗IbH → InG

to be the restriction of Φ to IaF ⊗ IbH .

(iii) Thanks to Step 2, for u ∈ IaF , we have that kΘh(u)− u ∈ Ia+1
F . Therefore, we may

define the k-module morphism

νga,b : IaF ⊗ IbH → Ia+1
F ⊗ IbH

u⊗ v 7→ (x− 1)kΘh(u)⊗ v + (kΘh(u)− u)⊗ v

(iv) Define the k-module morphism

υga,b : IaF ⊗ IbH → IaF ⊗ Ib+1
H

u⊗ v 7→ x kΘh(u)⊗ (h− 1)v

Let us show that for any ta,b ∈ IaF ⊗ IbH we have (equality in In+1
G )

(g − 1)Φa,b(ta,b) = Φa+1,b ◦ νga,b(ta,b) + Φa,b+1 ◦ υga,b(ta,b).
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Indeed, by linearity, it suffices to show this equality for u⊗ v ∈ IaF ⊗ IbH . We have

Φa+1,b ◦ νga,b(u⊗ v) + Φa,b+1 ◦ υga,b(u⊗ v)

= kι
(
(x− 1)kΘh(u)

)
kσ(v) + kι

(
kΘh(u)− u

)
kσ(v) + kι

(
x kΘh(u)

)
kσ((h− 1)v)

= kι
(
x kΘh(u)

)
kσ(hv)− kι(u)kσ(v) = kι(x)(kι ◦ kΘh)(u)kσ(h)kσ(v)− kι(u)kσ(v)

= kι(x)kσ(h)kι(u)kσ(v)− kι(u)kσ(v) =
(
kι(x)kσ(h)− 1

)
kι(u)kσ(v)

= (g − 1)Φa,b(u⊗ v),

where the third equality from the fact that both kι and kσ are algebra morphisms, the
fourth one from the definition of Θh and the last one from the definition of Φ and from
g = ι(x)σ(h).
Step 4 Let us show by induction on n that

Φ

( ∑
a+b=n

IaF ⊗ IbH

)
⊃ InG.

First, for n = 0, this follows from the surjectivity of Φ, thanks to (a). Next, since

In+1
G =

∑
g∈G

(g − 1)InG,

it suffices to show that for any g ∈ G and any z ∈ InG we have

(g − 1)z ∈ Φ

( ∑
a+b=n+1

IaF ⊗ IbH

)
.

By induction hypothesis, there exists (ta,b)a+b=n ∈
⊕

a+b=n

IaF ⊗ IbH such that

z = Φ

( ∑
a+b=n

ta,b

)
=
∑

a+b=n

Φa,b(ta,b).

It follows that

(g − 1)z =
∑

a+b=n

(g − 1)Φa,b(ta,b) =
∑

a+b=n

(
Φa+1,b ◦ νga,b(ta,b) + Φa,b+1 ◦ υga,b(ta,b)

)
=

∑
a+b=n+1

Φa,b

(
νga−1,b(ta−1,b) + υga,b−1(ta,b−1)

)
∈

∑
a+b=n+1

Φa,b

(
IaF ⊗ IbH

)
,

where the second equality follows from Step 3.
□

Lemma C.2. Let φ : G→ H be a group morphism and n ∈ Z. We have

(a) grn ker(kφ) ⊂ ker(grnkφ);
(b) if, moreover, φ is surjective, then grn ker(kφ) = ker(grnkφ).

Proof. (a) We have

grn ker(kφ) =
ker(kφ) ∩FnkG

ker(kφ) ∩Fn+1kG

⊂
{
x ∈ FnkG | kφ(x) ∈ Fn+1kH

}
Fn+1kG

(C.2)

= ker

(
FnkG

Fn+1kG
→ FnkH

Fn+1kH

)
= ker(grnkφ).
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(b) Let us now assume that φ : G → H is surjective. It suffices to prove that the inclusion
in (C.2) is in fact an equality. Indeed, let x ∈ FnkG such that kφ(x) ∈ Fn+1kH. The
surjectivity of φ : G → H implies the surjectivity of Fn+1kφ : Fn+1kG → Fn+1kH.
Therefore, there exists y ∈ Fn+1kG such that kφ(y) = kφ(x). It follows that

x− y ∈ ker(kφ) ∩FnkG,

and the image by the inclusion of the class of x−y in the source of the inclusion is the class
of x in the target of the inclusion, which implies that the inclusion in (C.2) is an equality.

□

Lemma C.3. Let φ : G→ H and ψ : G→ K be two group morphisms. We have (isomorphism
of k-modules)

Fn ker(kφ)

Fn+1 ker(kφ) +
∑

a+b=n

Fa ker(kφ) ·Fb ker(kψ)
≃ grn(ker(kφ))∑

a+b=n

gra(ker(kφ)) · grb(ker(kψ))
.

Proof. Let a, b ≥ 0 such that a+ b = n. We have

Fa ker(kφ) ·Fb ker(kψ) ⊂ FakG ·FbkG ⊂ FnkG,

where the second inclusion follows from the fact that (FmkG)m∈Z is an algebra filtration. On
the other hand, recall that ker(kφ) is an ideal of kG, therefore, ker(kφ) · ker(kψ) ⊂ ker(kφ).
This implies that

Fa ker(kφ) ·Fb ker(kψ) ⊂ Fn ker(kφ).

Therefore the product on kG induces a k-module morphism⊕
a+b=n

Fa ker(kφ)⊗Fb ker(kψ) → Fn ker(φ).

On the other hand, the fact that gr ker(kφ) is a graded ideal of grkG enables us to define a
k-module morphism ⊕

a+b=n

gra ker(kφ)⊗ grb ker(kψ) → grn ker(kφ).

Both maps fit in the following diagram

(C.3)

⊕
a+b=n

Fa ker(kφ)⊗Fb ker(kψ)
⊕

a+b=n

gra ker(kφ)⊗ grb ker(kψ)

Fn ker(kφ) grn ker(kφ)

where the horizontal maps are the canonical projection. This diagram is commutative since
for any a, b ≥ 0 such that a + b = n we have for g ∈ Fa ker(kφ) and h ∈ Fb ker(kψ) that
[g]a · [h]b = [gh]n.
Finally, recall that ker(Fn ker(kφ) → grn ker(kφ)) = Fn+1 ker(kφ). The result then follows by
applying Lemma B.1 to the commutative diagram (C.3). □
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