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A CATEGORICAL FORMULATION OF THE DELIGNE-TERASOMA

APPROACH TO DOUBLE SHUFFLE THEORY

BENJAMIN ENRIQUEZ AND KHALEF YADDADEN

ABSTRACT. In this paper, we introduce the notion of a bimodule with a factorization structure
(BFS) and show that such a structure gives rise to an algebra morphism. We then prove that this
framework offers an interpretation of the geometric construction underlying both the Betti and
de Rham harmonic coproducts of the double shuffle theory developed in [DeT, EF1, EF2, EF3].
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In [EF1], the first author and Furusho revisited the formalism of double shuffle relations among
multiple zeta values set up by Racinet [Rac]. There, they explained the “de Rham” nature of
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this formalism and constructed its “Betti” version, whose main objects are algebra “harmonic”
coproducts A7 PR and A7"B, respectively equipping the algebras # PR and #'® with a Hopf
algebra structure. The algebras PR and #'B can be seen as subalgebras of respectively 7B,
the group algebra of the free group with two generators and 7" PR, the enveloping algebra of
the free Lie algebra with two generators. The authors used this formalism to prove that the
associator relations between the multiple zeta values imply the double shuffle relations. This is
formulated as the inclusion of the torsor of associators in the double shuffle torsor [EF2]. To this
end, they constructed isomorphisms relating the Betti and de Rham sides and showed that any
associator relates the algebra coproducts A” PR and A”"B (|[EF1, Theorem 10.9]). Rather than
relying on Bar constructions as in [Fur|, this alternative proof builds upon an interpretation
of the harmonic coproducts in terms of infinitesimal braid Lie algebras for the de Rham side
and braid groups for the Betti side, which is implicit in the unpublished work of Deligne and
Terasoma [DeT].

The purpose of this paper is to formulate this construction of the harmonic coproducts in a
categorical framework, which will be used in a later paper [EY2] for the geometric interpretation
of the cyclotomic version of the Betti and de Rham coproducts introduced by the second author
in [Yad]. To this end, we define the category BFS of bimodules with factorization structures whose
objects are tuples (A, B, M, p,e, 7, c) such that (A,B,M,p) is a bimodule (i.e. M is a right
A-module equipped with a compatible left B-action p) and (e,r,c) satisfies the factorization
identity (see Definition 2.1.1)

ple) =cor.
We then construct a functor BFS — Mor(alg) which associates to any object (A, B, M, p,e,r, c)
of BFS, an algebra morphism given by (see Proposition-Definition 2.3.2)

(0.1) Bab—~rop()oc(la) € A.

On the other hand, we also define categories BFSg and BFSg, of respectively filtered and graded
objects of BFS as well as a functor BFSg — BFS,, which is induced by associated graded objects.
This enables the construction of functors BFSs — Mor(algg;) and BFSg, — Mor(alg,,) fitting in
the following diagram

BFS (2.5) BFSg, Sec. 2.2 BFSgr
(0.2) Sec. 2.3.{ Sec. 2.3.2 lSec. 2.3.3

Mor(alg) 28 Mor(algg) — Mor(alg,,)

Each of the squares gives rise to two functors, and one checks that there are natural equivalences
relating them.

The Betti and de Rham formalism of [EF1] can be interpreted within this framework through
the objects (see Proposition-Definitions 4.7.1 and 4.7.3)

o8 = (7B o 7B 78 MB, pB B rB, cB) e BFS,
and
@DR = (%‘DR ® %‘DR’ <7DR7 MDR,pDR, €DR,TDR, CDR) E BFSgr.

A suitable filtration on the object OF enables us to show that it gives rise to an object @f]ﬁ € BFSg;
(see Corollary 4.7.2). Thanks to the functor BFSg — BFS,, these objects are related by the
following:

Theorem I (Theorem 4.6.4). We have gr(6F) = 6PR.

The bimodule parts of these objects arise from geometric constructions, but their factoriza-
tion structures (eB,rB, cB) and (eDR, rPR cDR) require the use of explicit objects of the BFS
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categories arising from representations of the algebras 7B and #'PR, namely (see Corollaries
3.1.4 and 3.4.5)

Omae = (TP 7B, 78, (7P @ 7B)%®,rp, €8, rrow, rcol) € BFS,

mat

and
OPR .— (%DR @ 7’ PR PR ("WDR ® WDR)@?’, rp, ePR . rrow, rcol) € BFSg;.

mat

The prefix “r” signifies that the constructed objects differ from the objects with the same
notation from [EF1] by the fact that we consider right actions instead of left actions. Then,
once again, a suitable filtration on the object OF,, enables us to show that it gives rise to an
object @Eat’ﬁl € BFSg (see Corollary 3.3.4).

We show that the geometric objects @f]i%l and OP® and the explicit objects @Eat q and OPR are
respectively related thanks to bimodule isomorphisms:

Theorem II (Theorems 4.3.4 and 4.5.4). We have
MB ~ (%B ® %B)€B3 and MDR ~ (%'DR ® %DR)@?)
Finally, the explicit BFS objects enables the use of the functor BFS — Mor(alg) to construct

coproducts A@Eat and A@%}, as described in (0.1); then we identify them with the coproducts
A7 and A7 PR thanks to the following result:

Theorem III (Theorems 3.2.1 and 3.5.1). For bin 7B (resp. 7’PR), we have
Ags (b)) = A7 BB eB)  (resp. Agpr(b) = A7 PR} DRy,

mat,fil

Acknowledgments. This project was partially supported by first author’s ANR grant Project
HighAGT ANR20-CE40-0016 and second author’s JSPS KAKENHI Grant 23KF0230.

Notation. Throughout this paper, let k be a commutative Q-algebra.

1. BASIC CATEGORIES OF FILTERED AND GRADED ALGEBRAS AND MODULES

We introduce here the basic categories and functors relating them that we shall refer to
throughout this paper.

1.1. The categories k-mod, k-modg; and k-modg,.

Definition 1.1.1. (a) k-mod is the category of k-modules;

(b) k-modg is the category of filtered k-modules, that is, k-modules M equipped with a de-
creasing sequence of k-submodules (F"M),cz called filtration. Morphisms are filtered
k-module morphisms, that is, k-module morphisms ¢ : M — M’ which are compatible
with the filtrations on both sides. We denote by F"¢ : F"™™M — F"M’ the induced
k-module morphism corresponding to n € Z;

(c) k-mody, is the category of Z-graded k-modules, that is, k-module for which there exists a
sequence of k-submodules (M,,),ez, called grading, such that M = &, ., M,,. Morphisms
are graded k-module morphisms, that is, k-module morphisms ¢ : M — M’ such that
©(M,) € M/, for any n € Z. We denote by ¢, : M,, — M/, the induced k-module
morphism corresponding to n € Z.

Recall that there is an associated graded functor gr : k-modg; — k-modg, which takes a filtered
k-module (M, (¥"M),cz) to the graded k-module gr(M) := €, gr,, (M), where gr,(M) :=
F"M/F M for any n € Z. Denote by x — [z],, the canonical projection F"M —» gr, M for
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any n € Z. At the level of morphisms, one assigns to a filtered k-module morphism ¢ : M — M/,
the graded k-module morphism gr(¢p) : gr(M) — gr(M’) induced by the commutative diagram

F"M — 7P gn\Y

l l

grn(M) — grn(M/)
for any n € Z (see for example [Bbk, Chap. III, Sec. 2, no. 3 and no. 4]).

1.2. The categories k-alg, k-algg and k-alg,,.

Definition 1.2.1. (a) k-alg is the category of k-algebras (with unit);

(b) k-algg; is the category of filtered k-algebras, that is, k-algebras (A,-) equipped with a
k-module filtration (F™A),cz that satisfies FF¥A - F"A ¢ FFT"A, for any k,n € Z and
1 € #°A. Morphisms are filtered k-algebra morphisms, that is, k-algebra morphisms which
are also filtered k-module morphisms;

(c) k-alg,, is the category of Z-graded k-algebras, that is, k-algebras (A, ) equipped with a
k-module grading (A, ),ecz that satisfies Ay - A,, C Agyp for any k,n € Z and 1 € Ay.
Morphisms are graded k-algebra morphisms, that is, k-algebra morphisms which are also
graded k-module morphisms.

One immediately checks that if A is an object of k-algg;, then gr(A) is an object of k-alg,,.
Moreover, for a filtered k-algebra morphism ¢ : A — A’ the map gr(¢p) : gr(A) — gr(A’) is a
graded k-algebra morphism (see for example [Bbk, Chap. III, Sec. 2, no. 3 and no. 4]). One
then defines a functor k-algg — k-alg,,, which we also denote gr, such that we have a natural
equivalence that we summarize in the following diagram

k-algsg; —— k-modg;

grl lgr

k-alg,, —— k-modg,
where the horizontal arrows are forgetful functors.

1.3. The categories A-rmod, A-rmods and A-rmod,.

Definition 1.3.1. (a) For A € k-alg, denote by A-rmod the category of right A-modules. In
particular, one has A € A-rmod.

(b) For A € k-algg;, denote by A-rmodg) the category of filtered right modules over the filtered
algebra A, that is, right A-modules M which are equipped with a k-module filtration
(F"M),cz that satisfies FFM - F"A C FF"M for any k,n € Z. Morphisms are filtered
right A-module morphisms. In particular, one has A € A-rmodgi;

(c) For A € k-alg,,, denote by A-rmodg, the category of graded right modules over the graded al-
gebra A, that is, right A-modules M which are equipped with a k-module grading (M,,) ez
that satisfies My, - A, C Mgy, for any k,n € Z. Morphisms are graded right A-module
morphisms. In particular, one has A € A-rmodg;.

Let A be an object of k-algg. One immediately checks that if M is an object of A-rmodg,
then gr(M) is an object of gr(A)-rmodg,, the structure maps of which arise from the vertical
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cokernels of the collection of commutative diagrams

g;kM ® gn-&-lA + P]k'HM QFA — gk+n+lM

[ !

FFM @ FrA FhrtnM

indexed by k,n € Z. Moreover, if ¢ : M — M’ is a morphism of A-rmodg;, then the map
gr(y) : gr(M) — gr(M’) is a morphism of gr(A)-rmod,;,.
This defines a functor gr : A-rmodg; — gr(A)-rmod,;.

2. THE BIMODULE WITH FACTORIZATION STRUCTURE CATEGORIES

In this section, we introduce bimodules with factorization structures (BFS), a central concept
for our framework (Definition 2.1.1). We further define their filtered and graded counterparts,
extending the construction to settings where the underlying algebraic structures are equipped
with filtrations or gradings (Definitions 2.1.9 and 2.1.18). We show that any BFS gives rise to an
algebra morphism (Proposition-Definition 2.3.2). From this, it will follow that a filtered (resp.
graded) BFS yields a filtered (resp. graded) algebra morphism (Corollary 2.3.6, resp. Corollary
2.3.8).

2.1. The categories k-BFS, k-BFSg and k-BFS,,.
2.1.1. The category k-BFS.

Definition 2.1.1. (a) A k-bimodule is a tuple (A, B, M, p) where A, B are objects of k-alg, M
is an object of A-rmod and p : B — Enda_ymod(M) is a morphism of k-alg. The k-module
M is said to have a (B, A)-bimodule structure.
(b) A factorization structure on a k-bimodule (A,B,M, p) is a triple (e,r,c) where e € B,
7 € MOra_rmod(M, A) and ¢ € Mora_imod(A, M) such that (equality in Enda_rmod(M))
ple) =cor.

(¢) A k-bimodule with factorization structure is a tuple (A, B, M, p, e, r, ¢) such that (A, B, M, p)
is a k-bimodule and (e, 7, ¢) is a factorization structure on it.

Definition 2.1.2. Let (A,B, M, p) and (A’,B’,M’, p’) be two k-bimodules.

(a) A k-bimodule morphism between (A, B, M, p) and (A’,B’, M/, p/) is a triple (f, g, ¢) where
f:A — A’ and g : B — B’ are morphisms of k-alg and ¢ : M — M’ a morphism of
k-mod such that:

(i) For a € A and m € M,

p(m-a) =(m) - f(a);
(ii) For b€ B and m e M

@(p(b)(m)) = p'(g(b))(p(m)).

(b) If (e,r,c) and (¢/,7’,c') are factorization structures on (A,B,M,p) and (A’,B', M’ p/)
respectively, then a k-bimodule morphism (f,g,¢) : (A, B, M, p) — (A’,B’, M/, p’) is said
to be compatible with the factorization structures if:

(i) gle) = ¢’
(ii) for =1"o¢ (equality in Mora_imod(M, A’));
(iii) ' o f = ¢ o ¢ (equality in Mora_mod(A, M)).

Proposition-Definition 2.1.3. A category k-BFS can be defined such that objects are k-
bimodules with factorization structures and morphisms are k-bimodule morphisms compatible
with factorization structures.
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Proof. Immediate. 0
In the subsequent sections, we shall make use of the following general properties:
Proposition 2.1.4. Let (A,B,M, p) and (B’ A, M/, p') be two k-bimodules. Then the tuple
(B',B,M ®a M/, pg)
is a k-bimodule, where pg : B — Endp/_imod(M ®a M) is the k-algebra morphism given by
b p(b) ®idwmr.
Proof. Immediate verification. O

Proposition 2.1.5. Let A, B € k-alg and ¢ : B — A be a surjective morphism of k-alg. Let
M be a (B, B)-bimodule. We have

(a) The k-module M /M - ker(¢p) is a (B, A)-bimodule;
(b) There is a (B, A)-bimodule isomorphism

M @ A ~ M/M - ker(¢).
Proof. (a) The k-module morphism M ® B — M given by
mb—m-b, form € M and b € B,

takes the k-submodule M ® ker(¢) + M - ker(¢) ® B of its source to the k-submodule
M - ker(¢p) of its target. This results in a commutative diagram

M ® ker(yp) + M - ker(¢p) ® B ——— M - ker(y)

[ !

M®B M

whose vertical cokernel is a k-module morphism
M /M - ker(¢) ® A — M /M - ker(¢p),

thus giving the right A-module structure of M / M - ker(¢). The left B-module structure
follows from that of M and of M - ker(¢).
(b) By assumption, the morphism ¢ gives rise to the following exact sequence of left B-modules

ker(p) - B £ A — {0}.

Applying the right exact functor M ®pg — we obtain the following exact sequence of left
B-modules

M ®p ker(p) - M ®p B M, M gp A — {0}.
One derives the following left B-module isomorphism

(2.1) M ®p A ~ coker(M ®g ker(p) - M ®p B).

On the other hand, consider the left B-module morphism M ® ker(¢) — M given by
m ® k+— m - k. One checks that

(2.2) coker(M @ ker(p) — M) = M/M - ker(¢).
Next, we have the following commutative diagram of left B-module morphisms
M®ker(p) ——— M

i 5

M ®p ker(p) ——— M e B
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Taking the horizontal cokernels we have an isomorphism
(2.3) coker(M ® ker(¢) — M) ~ coker(M ® ker(¢) - M ®@p B).
We obtain the following chain of left B-module isomorphisms

(2.4) M®s A (2';*1) coker (M ®g ker(¢) - M @ B) (%) coker(M ® ker(p) — M) oo M /M - ker(¢).

It remains to prove that it is in fact a right A-module morphism. Indeed, for m € M,
a € A, and b € B such that ¢(b) = a, recall the right A-module structure on M ®p A
given by
(m®1)-a=mb® 1,
and the right A-module structure on M/M - ker(yp) given by
(m+M - ker(p)) -a=m b+ M- ker(p),

thanks to (a). Finally, one checks that the image of mb® 1 € M ®p A by the morphism
(2.4) is given by m b+ M - ker(¢) € M/M - ker(). This completes the proof.
U

Proposition 2.1.6. Let (A,B,M,p,e,r,c) be an object of k-BFS and (A’,B', M/, p’) be a
k-bimodule. Assume that there exists a k-bimodule isomorphism

(f,9.¢): (A,B,M,p) — (A",B' M, p).

Set ¢ = g(e) € B, v := forop ' € Mora/ mod(M/,A") and ¢ := poco f! ¢
Mora’mod(A’, M’). Then, the tuple

(A B’ M, p ¢ 7 c)
s an object of k-BFS.
Proof. We have
J(¢) = f(g(e) = pople) o g~ —gpocofloforop

where the second equality follows from Definition 2.1.2 (a) and the third one from the equality
ple) =cor. O

1 1 1

:(pocoro¢_ :c’o'r/,

2.1.2. The category k-BFSg;.

Definition 2.1.7. Let A € k-algg and M and M’ € A-rmodg. For n € Z, define
F"MoOrA_rmod(M, M) to be the set of right A-module morphisms ¢ : M — M’ such that
e(FFM) C FFM' for any k € Z.

Lemma 2.1.8. Let A € k-algg and M and M’ € A-rmodg. The sequence of right
A-modules (F"Mor A _rmod (M, M')) ez is decreasing and compatible with composition, that is,
for @ € F"Mor A rmod (M, M) and ¢’ € F" Mor a rmod(M/, M"), we have

@' o € F" Mora _ymod (M, M").

In particular, the k-module Enda_rmod(M) equipped with the filtration (F"End mod(M))nez is
an object of k-algg.

Proof. Immediate. 0
Thanks to Lemma 2.1.8, we may define the following:

Definition 2.1.9. (a) A filtered k-bimodule is a k-bimodule (A, B, M, p) such that A and B
are objects of k-algg;, M is an object of A-rmodg; and p : B — Enda_ymod(IM) is a morphism
Of k—a|gﬁ1.



8 BENJAMIN ENRIQUEZ AND KHALEF YADDADEN

(b) A filtered factorization structure on a filtered k-bimodule (A,B, M, p) is a factorization
structure (e, 7, ¢) on the k-bimodule (A, B, M, p) such that
e € F'B, r € F'Mora_mod(M, A) and ¢ € FMora_rmod(A, M).

(c) A filtered k-bimodule with factorization structure is a filtered k-bimodule equipped with a
filtered factorization structure.

Remark 2.1.10. For a filtered factorization structure (e, 7, ¢) on a filtered k-bimodule (A, B, M, p),
the identity p(e) = cor is an equality in F'Enda_mod(M).

Lemma 2.1.11. If A is an object of k-algg, and M an object of A-rmodg, then the filtered
k-modules Mor A rmod(A, M) and M are isomorphic.

Proof. The maps
Mora rmod(A, M) = M, ¢ — ¢(1) and M — Mora_mod(A, M), m — (a — ma)
are compatible with the filtrations, and are inverse isomorphisms. Il

Definition 2.1.12. A filtered k-bimodule morphism compatible with factorization structures is
a morphism (f,g,¢) : (A,B,M,p,e,r,c) — (A, B M’ p/ ¢ 7' ) of k-BFS such that f, g
are morphisms of k-algg and ¢ is a morphism of k-modg;.

Lemma 2.1.13. A category k-BFSg; can be defined such that objects are filtered k-bimodules
with factorization structures and morphisms are filtered k-bimodule morphisms compatible with
factorization structures.

Proof. Immediate. 0
Remark 2.1.14. The forgetful functors k-modg — k-mod and k-algg; — k-alg induce a functor
(2.5) k-BFSg — k-BFS.

In the subsequent sections, we shall make use of the following pullback property:

Proposition 2.1.15. Let (A,B,M,p,e,r,c) be an object of k-BFSg and (A, B’ M, o) be a
filtered k-bimodule. Assume that there exists a filtered k-bimodule isomorphism

(f.9.¢): (A,B,M,p) — (A",B' M, o).
Set ¢ = g(e) € B, v := foroe ' € Morarimoed(M',A’) and ¢ :== poco f! ¢
Mor /. mod(A’, M’). Then, the tuple

(A',7 Bl? M/? pl7e/7r,’ c/)

s an object of k-BFSg.
Proof. Recall from Proposition 2.1.6 that the tuple (A’, B’ M’ o/, ¢/, 7', ¢/) is an object of k-BFS.
Moreover, since e € F'B (resp. r € F'Mora.mod(M,A) and ¢ € F'Mora_mod(A, M))
and g : B — B’ (rtesp ¢ : M — M’ and f : A — A’) preserve filtrations, it follows that
¢ =gle) € F'B' (resp. ¥ = foroe ' € FMora/ mod(M/',A") and ¢ = poco f! ¢
FIMorpr_rmod (A, M')). ]

2.1.3. The category k-BFS,,.

Definition 2.1.16. Let A € k-alg,, and M and M’ € A-rmodg,. For n € Z, define
Mora_imod(M,M’),, the set of right A-module morphisms ¢ : M — M’ such that
©(My) C My, for any k € Z.
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Lemma 2.1.17. Let A € k-alg,, and M and M’ € A-rmody. The sequence of right
A-modules (Mora_rmod(M, M) )nez  defines a  grading on Mora mod(M,M') and 1is
compatible with composition, that is, for ¢ € Mora rmod(M, M), and ¢’ € Mora _rmod(M', M"),/,
we have

‘P, o ¢ € Mora _rmod (M, M//)n—i—n’-

In particular, the k-module Enda mod(M) equipped with the grading (End A _rmod(IM)n)nez is an
object of k-algg,.

Proof. Immediate. O

Thanks to Lemma 2.1.17, we may define the following:

Definition 2.1.18. (a) A graded k-bimodule is a k-bimodule (A, B, M, p) such that A, B are
objects of k-alg,,, M is an object of A-rmodg, and p : B — Enda.rmod(M) is a morphism
of k-alg,,.

(b) A graded factorization structure on a graded k-bimodule (A, B, M, p) is a factorization
structure (e, r, ¢) on the k-bimodule (A, B, M, p) such that

e € By, 7 € Mora_mod(M, A)y and ¢ € Mora_rmod(A, M);.

(¢) A graded k-bimodule with factorization structure is a graded k-bimodule equipped with a
graded factorization structure.

Remark 2.1.19. For a graded factorization structure (e, r, ¢) on a graded k-bimodule (A, B, M, p),
the identity p(e) = cor is an equality in Enda_rmod(IM);.

Definition 2.1.20. A graded k-bimodule morphism compatible with factorization structures is
a morphism (f,g,¢) : (A,B,M,p,e,r,c) — (A, B M’ p/ ¢ v ) of k-BFS such that f, g
are morphisms of k-alg,, and ¢ is a morphism of k-modg,.

Lemma 2.1.21. A category k-BFSg,. can be defined such that objects are graded k-bimodules
with factorization structures and morphisms are graded k-bimodule morphisms compatible with
factorization structures.

Proof. Immediate. U

In the subsequent sections, we shall make use of the following pullback property:

Proposition 2.1.22. Let (A,B,M, p,e,r,c) be an object of k-BFSg, and (A’, B’ M/, p’) be a
graded k-bimodule. Assume that there exists a graded k-bimodule isomorphism

(f.9.¢): (A,B,M,p) — (A ,B' M, o).

Set ¢ = g(e) € B, v := forop ' € Mora/ mod(M/,A") and ¢ := poco f! ¢
Mora/mod(A’, M’). Then, the tuple

(A'l’ B,’ Ml? p” 6/7 r,’ c,)
is an object of k-BFSg,.
Proof. Recall from Proposition 2.1.6 that the tuple (A’, B’ M’ p/, ¢/, 7', ¢’) is an object of k-BFS.
Moreover, since e € By (resp. 7 € Mora_imod(M, A)g and ¢ € Mora_rmod(A,M)p) and g : B —

B’ (resp ¢ : M — M’ and f : A — A’) preserve gradings, it follows that ¢/ = g(e) € B (resp.
= forop ' €Moraimed(M/,A’)g and ¢/ = poco f1 € Mora/mod(A’, M')g). O
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2.2. The functor k-BFSs — k-BFS,,. Let A be an object of k-algg, and M and M’ be two
objects of A-rmodg. Let n € Z. Thanks to definition 2.1.7, we have the following k-module
morphism
F"Mor A-rmod (M, M') @ FEM — FnHem’
for any k € Z. One immediately checks that it induces a k-module morphism
gr, (MorA—rmod (M7 M/)) & grk(M) — grn+k(M/)
and then the k-module morphism
gr,, (Mora-rmod(M, M')) — Mor A-rmod (g1 (M), gr,, 1, (M)).
which enables us to define the k-module morphism
gry (MOIA—rmOd (Ma M/)) - Morgrm(A)—rmod (grk(M) ® grm(A)7 grnJrk(M,) ® grm(A))v
for any m € Z. Thanks to Definition 2.1.16, one then defines the k-module morphism
grlt/LMl P8y (MorA-rmod (Ma M/)) — Morgr(A)-rmod (gI‘(M), gr<Ml))n

to be the direct sum over k, m € Z of these k-module morphisms. In particular, we set

%1:/[ = ﬁylyl’M P gy (Endgr(A)—rmod (M)) — EndA-rmod (gr(M))n

Lemma 2.2.1. Let A be an object of k-algg and M and M’ be two objects of A-rmodg,. For
any n € 7, the k-module morphism

g'rI:/I’M/ P8y (MOTA-I‘mOd (Ma M/)) — Morgr(A)—rmod (gr(M)7 gr(M,))n
1s such that the following diagram

grn (MorA"mOd (M7 M,)) ® grn’ (MOI‘A.rmod (M/’ MN)) —_— grn+n’ (MOI‘A.rmod (M7 MU))

MlﬂM//l M,M”

M, M/
/ gn+n’

gn " ®g,
Morgr(A)—rmod(gr(M)7gr(M/))n X Morgr(A)—rmod(gr(Ml)7gr(MN))n’ — Morgr(A)—rmod(gr(M)7gr(MN))n+n’
commutes. In particular, the map

gM = @gy : gr (EndA rmod(M)) — Endgr(A)—rmod (gr(M))
nel

is a morphism of k-alg,, .
Proof. Immediate. 0
Lemma 2.2.2. (a) If (A,B,M,p,e,r,c) is an object of k-BFSg, then

(er(A), gr(B), (M), ¢™ o gr(p), [e]1, 26" (7o), 2™ ([eln) )

is an object of k-BFSg;,.
(b) If (f,g,¥) is a morphism of k-BFSg), then the triple

(gr(f), gr(g), gr(%))
is a morphism of k-BFSg;.

Proof. (a) Through a direct verification, one checks that the tuple
(gr(A), gr(B), gr(M), ™ o gr(p))

is a graded k-bimodule. Regarding the factorization structure, since e € %'B,
r € FOMora.rmod(M, A) and ¢ € FMora_imod(A, M), one then obtains [e]; € gr,(B),
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M,A AM
420 ([T]U) S Morgr(A)-rmod(gr(M)agr(A))O and 21 ([c]l) € 1\/[Orgr(A)-rmod (gr(A),gr(M))l,
respectively. Next, let us consider the diagram
(2.6)

Lo;l
gOMOTA_rmOd (M, A) ® glMorA—rmod (A, M) —_— glEndA-med (M) <—p ng

sl e l[—h

grip
groMora-rmod (M, A) ® gr; Mora-rmod(A, M) —————— > gr;Enda-rmod(M) — gr(B)

M,A M,A
20 " ®g i 7"

grp
Morgr(a)-rmod (21 (M), g1(A))o @ MoTgr(a)-rmod (gr(A), gr(M))1 — Endgy(a)moa(gr(M)): +—— gr;(B)

The top squares commute by the definitions of associated graded morphisms and the
bottom squares commute thanks to Lemma 2.2.1. Recall that p(e) = cor (equality in
F'Enda-rmod(M)). The image of this equality by [~]; is, using the commutativity of the
top squares of Diagram (2.6), the following equality

grp(le]1) = [e]1 o [r]o € griEnda_rmod(M).
Using the commutativity of the bottom square of Diagram (2.6), the image of this equality
by ¢gM is the following equality
AM M,A
g1 ogrp(le) = g1 ([ch) 0 29 ([7]o) € Endge(a) mod (g1(M))1

(b) Direct verification.
|

Corollary 2.2.3. The assignment given by (a) and (b) of Lemma 2.2.2 defines a functor
k—BFSﬁ] — BFSgr.

Proof. Immediate. O

2.3. The functors k-BFS — Mor(k-alg), k-BFSg — Mor(k-algg;) and k-BFSg, — Mor(k-alg,,).
For any category €, define the category Mor(®) whose objects are morphisms of ¥ and whose
morphisms are commutative diagrams.

The forgetful functor k-algg; — k-alg induces a functor

(2.7) Mor(k-algg) — Mor(k-alg).
Moreover, the functor gr : k-algg — k-alg,, induces a functor
(2.8) Mor(k-algg;) — Mor(k-alg,, ).

2.3.1. The functor k-BFS — Mor(k-alg).
Lemma 2.3.1. Let B be an object of k-alg and e € B. For b,b' € B, denote b-. V' := beb'. Then
k@ (B,-) is an object of k-alg whose product is given explicitly by

(A, 0) e (N,0) :i= AN, A + XNb+b- b).
Proof. Direct verification. O
Proposition-Definition 2.3.2. Let (A, B, M, p,e, 7, c) be an object of k-BFS and consider the
evaluation map Enda _rmod(A) = A, u+— u(la). Then, the map A :k @ (B, ) — A given by
1+— 1A and for b e B,

b—rop(b)oc(la),

s a morphism of k-alg.

Liwhich will be abusively denoted “-.” as well.
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Proof. Since the evaluation map Enda rmod(A) — A, u — u(1a) is a morphism of k-alg (actually
an isomorphism), it suffices to show that p: k@ (B, ) — Enda_rmod(A) given by 1+ 14 and
for b € B,

b— rop()oc,

is a morphism of k-alg. Since, by definition p(1) = 1a, it remains to show that p(b-. V') =
p(b) o p(¥') for b,b’ € B. Indeed, we have

p(b-eb') = p(bed’) =0 p(bed’) o c =10 p(b) o p(e) o p(b') o c
—rop(b)ocorop(t)oe=a(b)opt),
where the third equality comes from the fact that p : B — Enda_rmod(IM) is an algebra morphism

and the fourth one from the identity p(e) = cor. D
Corollary 2.3.3. The assignment

(2.9) (A,B,M,p,e,r,c)—~ (A:kd (B,.) > A)

defines a functor k-BFS — Mor(k-alg).

Proof. Immediate verification. O

Remark 2.3.4. Considering the functors F, G : k-BFS — k-alg given by (A,B,M, p,e,r,c) —
ko (B,-) and (A,B,M, p,e,r,c) — A respectively, the assignment

(AaBaM7p7e7r7c) = (A : k@ (Bf@) - A)
is a natural transformation from F' to G.
2.3.2. The functor k-BFSg — Mor(k-algg,).

Lemma 2.3.5. Let B be an object of k-algg and e € F'B. Then k @ (B, ) is an object of
k-algg with an algebra filtration given by

FO kD (B,) =k® (B,) and F'(k® (B,-.)) = F"'B forn > 1
Proof. Follows from the fact that e € #1B. O

Corollary 2.3.6. If (A,B,M, p,e,r,c) is an object of k-BFSg, then the map A : k@ (B, ) —
A defined in Proposition-Definition 2.3.2 is a morphism of k-algg,. Moreover, the assignment

(2.10) (A,B,M,p,e,r,c)—~ (A :kd (B,.) > A)
is a functor k-BFSg — Mor(k-algg;).

Proof. Follows from the fact that p is compatible with filtrations, from » € F°Mor a_rmod (M, A)
and ¢ € F'Mora_imod(A, M) and from the compatibility of the composition with filtrations. [

2.3.3. The functor k-BFSg, — Mor(k-alg,,).

Lemma 2.3.7. Let B be an object of k-alg,, and e € B1. Then k® (B, ) is an object of k-alg,,
with an algebra grading given by

(k@ B,¢))o=k and (k® (B,))n =Bp_1 forn>1
Proof. Follows from the fact that e € B;. O

Corollary 2.3.8. If (A,B,M, p,e,r,c) is an object of k-BFS,;, then the map A : k& (B,-.) —
A defined in Proposition-Definition 2.3.2 is a morphism of k-alg,,. Moreover, the assignment

(A,B,M,p,e,r,c)— (A:kd (B,) = A)
is a functor k-BFSg — Mor(k-alg,, ).

Proof. Follows from the fact that p is compatible with gradings, from r € Mora_mod(M, A)g
and ¢ € Mora_ymod(A, M)1, and from the compatibility of the composition with gradings. O
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@B

B
3. THE OBJECTS 0 mat fi

mat>

| AND OPR AND THE HARMONIC COPRODUCTS

In this section, we construct explicit bimodules with factorization structures associated to
the Betti and de Rham realizations of the double shuffle theory developed in [EF1] (Corollary
3.1.4). Building on the functor k-BFS — Mor(k-alg) introduced in the previous section, we then
define algebra morphisms (3.2) and (3.12) that we demonstrate to correspond precisely to the
harmonic coproducts described in [EF1] (Theorems 3.2.1 and 3.5.1).

3.1. The object OB,, of k-BFS. Let F» be the free group with generators Xy and X; and let
7B .= kF, be its group algebra. For i € {0,1}, we will abusively denote
Xi=X;©1€e7P@7P and ¥; =10 X; e 7P 27"

Recall from [EF1, Sec. 7.2.3] the algebra morphism p : 7% — M3(7® ® 7®) given by

Xo 0 0 (X, —1)Yi+1 Yi(1-Yy) 0
B(Xo) = 0 (1 - Xl)XQ + Y1_1Y0Y1 (1 - Xl)XOXl and B(Xl) = 1-— X1 Yl 0

0 Xo - Yy Yoy Xt XoX1 0 0 1
Proposition-Definition 3.1.1. The tuple (72 @ 7B, 78, (7B @ 7B)®3,rp) is a k-bimodule
where rp : VB — M3 (VB 2 VP) is the k-algebra morphism given by the composition

P = Adgiag (v 1. (%0X0)-1¥y o)1 © H3(0Prz) 0 (=) 0 p o op,.

Proof. This follows from the algebra morphism status of p and from the k-algebra isomorphism
M3 (7P @ VP) ~ Endg898) mod (77 @ 77B)%3). O

Definition 3.1.2. Set

X, -1
rmow == (1 —X; 0) Vi€ 137 @7P) andreol =Y ' [ 1-Y) | € tls1(7P 2 7P).
0

Proposition 3.1.3. We have (equality in M3(72 @ 7P))
rp(X1 — 1) = rcol - rrow.
Proof. By definition we have

rp(X1 — 1) = diag(Y1, X1, (XoX1) 'Y, 'YoY1) ™" sz(opgz) ((plops, (X1 — 1))))
diag(Y1, X1, (XoX1) 'Y YoYy).

On the other hand, from [EF1, page 46|, we have

Y
plopp, (X1 — 1)) =p(X;' 1) = - —i i) H(Xi—-1 1-Y; 0)
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Moreover, applying identity (A.2) for (¢,n,s) = (3,1,3), E = kF} and f = oppz, it follows that

t -1
_Xl
t3(0pgz) (“(plopr, (X1 = 1)) = i g(ops) ('(X1 =1 1=Yi 0)) sgs(opgz) | | (iv1) ™!
0
X1
=|(1-v'| (X1 X111 0)
0
Then
Xt -1
rp(X1 — 1) = diag(Y1, X1, (XoX1) 'Y 'Yov) ™ [ 1-vH ) (X1 Xavi 0)
0
diag (Y1, X1, (XoX1) ™'Y 'YoY1)
(i) -y XYy -y
— (x| (X oxvnxa 0)= viio1r | i —xav 0),
0 0
which is the announced result. ]
Corollary 3.1.4. The tuple
(3.1) Oar = (7P @ 72,75 (7P @ 77)% rp, X1 — 1, rrow, reol)

is an object of k-BFS, where rrow (resp. rcol) is identified with its corresponding right 7B @ 7B-
module morphism (7B @ 7B)®3 - 7B o 7B (resp. 7B 7B — (7B @ 7B)®3).

Proof. This follows from Proposition-Definition 3.1.1 and Proposition 3.1.3. (I

3.2. The image of OB, in Mor(k-alg) and the coproduct A”-B. Applying the functor
k-BFS — Mor(k-alg) given in (2.9) to the object G2, given in (3.1), one defines the algebra
morphism

(3.2) Agp k@ (7P, (x,21) 2 7P 07"
Explicitly, for b € "B we have
Agp (b) = rrow - rp(b) - reol,
On the other hand, recall from [EF1, Sec. 2.1] the subalgebra %2 of 7B given by
B =kao7B(X, -1).
There is an algebra morphism k@ (7B, (X1-1)) = W8 given by v+ v- (X1 —1). It is obviously
surjective, and it is injective since right multiplication by X1 —1 is an injective endomorphism of
7'B. On the other hand, it follows from [EF1, Proposition 2.3] that the algebra %' is generated
by
(3.3) X, and XXy — 1) for n € Z.
An algebra morphism A”"B . %8B — 9B @ w8 is given by (see [EF1, Lemma 2.11])
AW’B(Xfl) — X;l ®X;1,
and for n € Z,
n—1
AT BXP(X - 1) =X3(X - D) @1 +1@ X§(X1 —1) = > X§(X) - 1) @ X§*(X, - 1),
k=1



A CATEGORICAL FORMULATION OF THE DOUBLE SHUFFLE THEORY 15

using the convention that for a map f from Z to an abelian group and p,q € Z,

q f)+-+ flq) ifg>p—1
(3.4) > fk)=<0 ifg=p—1
k=p —flp—=1)—-—flg+1) ifg<p-1

Theorem 3.2.1. The following diagram

w8 ar” » B WP
(3.5) % 1
As
k®(%B7'X1—1) mat > 7B®%B

commutes.

Proof. Since all arrows of diagram (3.5) are algebra morphisms, it suffices to establish the
commutativity through evaluation on a system of generators of #' 2, which we take to be the
ones given in (3.3).

The image of X; ! by the composition #® — (#B @ #'B) — (7B @ 7'B) is given by

Xt e X texh

On the other hand, recall that Xfl = —Xfl(Xl —1)+1. The image of Xfl by the composition
WP~ (kad (78, x,-1)) = (7P @ 7P) is then given by

Xfl > —ITOW - rB(Xfl) -rcol + 1.
We have
-1y _ t
PAXT) = Adgiag vy x, (o0 -1 Hov) - © As(0pig) (2(X1))
YiXs—Yi+1 —-X;+1 0

- Addiag(yl,X17(X0X1)’1Y1_1Y0Y1)*1 © ﬂg(opFQQ) Y 6 Y12 }(;1 ?
Yix)?t-yit+1 —x;7t+1 o0
= Adgiag(v1,X1,(XoX1) 1Y, Yoyy) ! vl -y 2 v 0
0 0 1
VX)) -y el Syt yiXg 0
_ -1 —1y—1 -1
= x;7'-x7'y; Y, 0],
0 0 1

where the second equality comes from [EF1, Lemma 7.11]. Therefore,
—rrow - rp(X7 1) creol + 1= -1+ (X1Y1) '+ 1= X' @ X[,
thus proving the equality of the images of X L
Next, for n € Z, the image of X7(X; —1) by the composition #B — (#Bo#B) — (7Be7?B)
is given by
n—1
XP(X1—1) = XP(X1 - 1) @141 X5(X: —1) = Y X§(X1 - 1) @ X5 (X1 - 1).
k=1
On the other hand, the image of X{'(X; — 1) by the composition #® ~ (k& (7, -x,_1)) <
(7B @ 7B) is given by
Xo (X1 =1) = Ags (Xg) = rrow - rp(Xg') - reol.
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We have

. _ —1 _ . _
rp(Xy) = diag(Y, X1, (XoX1) 'Y, 'YoY) +M3(0pE2) ("'p(Xg™)) - diag(Y, X1, (XoX1) 1Y 'Yo1h).

Notice that
rrow - diag(V3, X1, (XoX1) 'Yy 'ov) ' = (1 —Yi 0),

and
X -1
diag(¥1, X1, (XoX1) Y, 1¥o¥1) T ereol = | X1¥h - X,
0
Then
X -1
Ags (X)) = (1 =1 0)-tz(oppz) o (=) (p(Xg™) - | X1¥ ' = X,
0

—

1
= /%1,3(OPF22) ot(-) —5;_1 : '%3(OPF22) of(=) (p(Xg™)

~dlz 1 (opg2) o' (<) (X' =1 Xy'vi— X' 0))
Yy

=opp | =X; (14 X1 —Yi+1 0)p(Xg™) | -1 |V
0

= OPp2 < -X{'® 1((X1 ~DX," @1+ e (1 - X DX, "X

—n—1
- > (K- Dxbe (- X)X )1 ®Xf1>
k=1

—n—1
=X{(X-D)eX1+ X1 e Xg(X1 -+ > XoH (X - D)@ XP X - 1)

k=1
n

=X{(X1 -1 X1+ X1 @ Xg(X1 —1) = Y X§(X1 - 1)@ X" (X1 — 1)

k=0
=Xg(X1-1)eXi+X10Xf(Xi—-1)-(X1 —1)eXi(X;—-1) - Xg(X1 — 1) ® (X7 - 1)
n—1
=) X§(X - 1)@ X§THX - 1)
k=1
n—1
=X{(X1—D)@1+1eX5(X - 1) - > X§(X1 —1)® Xy F(X; - 1)
k=1

where the third equality follows by applying identities (A.1) and (A.2), the fourth one from
[EF1, Lemma 7.12], and the sixth one by using the identity (coming from (3.4))

—n—1 n
o fR)y == f(=k),
k=1 k=0

for any map f from Z to an abelian group. This concludes the proof of the equality of the
images of X['(X; —1). O
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Remark 3.2.2. Under the identification #'B ~ k@ (7B, -x, 1), the commutativity of diagram
(3.5) enables us to obtain that the image of Agp lies in WB @ WB as well as the identity

Agp = A"B,

3.3. The object @Eat’ﬁl of k-BFSg; and its image in Mor(k-algg;). Recall from Proposition-
Definition 3.1.1, Definition 3.1.2 and (3.1) the object 02, of k-BFS given by
O = (7P 7B, 72 (7° @ 7P)%,rp, X1 — 1, rrow, rcol)
The group algebra 7B = kF, is naturally equipped with a filtration
(3.6) FkF, =kF and for n > 1, F"kF, = I}},

where I, denotes the augmentation ideal of the group algebra kF», which is the k-submodule of
kFy generated by the elements g — 1, where g € F5 and is also the right (or left) kFs-submodule
of kFy generated by Xo — 1 and X; — 1. The pair (7B, (F"7B),cz) is an object of k-algg,.

Lemma 3.3.1. A filtration (F"(ZB@7®))ncz of the k-algebra B VB is defined, forn > 0,
by

FHU7Pe7P) = ) FrPeFvP

i+j=n

The pair (7B @ 7B, (F (7B @ 7B))nez) is an object of k-algg,.
Proof. Immediate verification. O
Lemma 3.3.2. A filtration (F*(ZB@7B)®3),cz of the right (7 B@7B)-module (7B o7 B)®3
s given by

P/T”(%B ® %B)Ga?: — (gn(%B ® %B))Gﬁ’
forn > 0. The pair (78 @ 7B)®3 (F(7P @ 7P)®3),ez) is a filtered bimodule over the pair
of filtered algebras (7B, 7B @ 7'B).

Proof. The first statement can be proved by a direct verification. For the second statement, we
have that

Xo—1 0 0
rp(Xo—1) = 0 (X1 Y1) 7YY, —1 (X1Y1) 711 - XX YY) Yo,
0 (VoY1) "' Xo(1 — X))V Xo— 1+ (1 - XoX; ' Xy HY 'Yoy
e Ms(FHVE @ 7?))
and
XX -)y7t xi(1-X3) 0
rp(X1 —1) = 1-Y; X\ (Y1 —1) 0| €ts(FH (7P 2 7P)),
0 0 0
which implies that rp(Ip,) C M3(F (72 @ 7P)) and therefore for any n > 1, we obtain
rp(I) C Ms(F( 7B @ 7B)). O

Lemma 3.3.3. We have rcol € F1(7B @ 7 B)®3.
Proof. This follows by definition of rcol. O

Corollary 3.3.4. The filtrations given in (3.6), Lemmas 3.3.1 and 3.5.2 define a filtered struc-
ture on OB_., which defines an object OF of the category k-BFSg.

mat’ mat,fil
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Proof. Follows from Lemmas 3.3.1, 3.3.2 and 3.3.3, where in the latter lemma, we identify rcol
with its corresponding right (7" B®%®)-module morphism 7 B@7 B — (7Bo7B)®3 and use the
isomorphism of filtered k-modules Mor(98g98) rmod (7Bo7B, (7B 7B)®) ~ (7Ba7B)®3
given by applying Lemma 2.1.11 to A = 7B @ 7B and M = (7B @ 7'B)®3. O

Corollary 3.3.5. The image of the object @Eat’ﬁl by the functor k-BFSg — Mor(k-algg;) given
in (2.10) is a filtered algebra morphism

A@B :k@(%Bv'()ﬁ—l)) _>%‘B®%B7

mat,fil

which, as an algebra morphism, is equal to A@Bat ko (78, (X1-1)) — 7Bo¥® given in (3.2).

Proof. The left hand side of (0.2) is a commutative diagram of functors. The result follows by
evaluating the images of the object 68 by the functors k-BFSg — k-BFS — Mor(k-alg) and
k-BFSg; — Mor(k-alg) — Mor(k-algg). O

3.4. The objects O} and gr(0P,, ) of k-BFS,,. Let f2 be the free graded k-Lie algebra

mat mat,fil
with generators ey and ey of degree 1 and let Z"PR := U(fo) be its universal enveloping algebra,
which is an object of k-alg,, thanks to [EF1, Sec. 2.1]. Set e := —eg — e1. For i € {0,1, 00},
we will abusively denote
eii=e;01e7PRo7PRand fi :=1®e € 7P @ PR,

Recall from [EF1, Sec. 5.2.3] the algebra morphism p : PR — #3(7PR @ 7’PR) given by

€eo 0 0 €1 —fl 0
pleo) =10 —er+fo —er | andp(er)=|—-er fi O
0 —exw—fo —ex 0 0 0

Moreover, the algebra 7 PR @ PR is equipped with the grading given by
(%DR ® %DR)TL — Z %DR ® %DR’
i+j=n
for any n > 0. Additionally, the right (ZPR @ 7"PR)-module (7' PR @ 7" PR)®3 is equipped with
the grading given by
((%DR ® %DR)EB3)n = ((%DR ® %'DR)”)@EE’
for any n > 0, which we denote by (7' PR @ 7"PR)&3,

Proposition-Definition 3.4.1. The tuple (7 PR @7 PR 7 PR (7 PRy PR3 (p) is a graded
k-bimodule where rp : 7PR — 4l3(7 PR @ 7’PR) is the k-algebra morphism given by

rp = %3(8@92) o t(—) opo ng.
Proof. The bimodule structure follows from the algebra morphism status of p and from the k-

algebra isomorphism #3(7 PR @ 7"PR) ~ End 9 prg7 R rmod ((7PR @ 7PR)®3). The graded
status of the bimodule (7P} @ 7PR PR (DR & 7DRYE3 v5) follows from the fact that

€0 0 0
rpleg) = | 0 —e1+ fo —eo — fo | € Ms((ZPR @ 7PRY))
0 —eq —eso
and
e1 —e O
rpler) = |- fi 0] € dz(7PR @ 7PR),).
0 0 0
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Definition 3.4.2. Set

rmow := (1 —1 0) € M1 3(7"* @ 7PR) and rcol := —6}1 € Ms 1 (7PR @ 7PR).

Lemma 3.4.3. We have (equality in M3(7 PR @ 7’PR))

rp(e1) = rcol - rrow.
Proof. Immediate verification. O
Lemma 3.4.4. We have rcol € (7B @ 778)$3.
Proof. This follows by definition of rcol given in Definition 3.4.2. U
Corollary 3.4.5. The tuple
(3.7) OPR .— (PR g DR DR (DR & rDRYD3 5 e1, rrow, reol)

is an object of k-BFSy:, where rrow (resp. rcol) is identified with its corresponding right
(7PR @ 7PR)-module morphism (PR @ 7PR)®3 — PR g DR (resy PR g PR
(PR @ 9/PRY@3 ),

Proof. This follows from Proposition-Definition 3.4.1 and Lemmas 3.4.3 and 3.4.4. U
Proposition 3.4.6. The tuple
gt (Opast) = (@r(7° @ 7P), 7P, gr (77 @ 7°)®%), gr(rp), [X1 — 11, gro(rrow), gry (reol))

is an object of k-BFSg,. Moreover, the objects gr(@mat ﬁl) and OPR are isomorphic.

Proof. The first statement follows by applying the functor k-BFSg — k-BFSg, defined in
Sec. 2.2. For the second statement, recall from [EF1, Sec. 2.4.1] that there is a graded
algebra isomorphism grZ’® ~ PR given by [X; — 1] = e; (i € {0,1}). This induces a
graded algebra isomorphism gr(7® @ 7B) ~ PR @ #’PR_ therefore a graded right mod-
ule isomorphism gr((7® @ 7B)®3) ~ (PR @ 77PR)E3 gver the graded algebra isomorphism
gr(7B @ 7B) ~ PR @ PR, Finally, the following diagrams are commutative

gro (78 @ 7B)08 EVE, g 78) gy (77B) L gy (7B 0 7B
(WDR ® %DR>®3 rrow DR /DR reol (WDR Q %DR)EBS

and

e (7B) 2 gy (ar(7 0 7))

% lg
FOR P g (7PR @ 77 PR)

Indeed, for the first two diagrams, it suffices to prove that gr(rrow) = rrow and gr(rcol) = rcol,
under the isomorphism gr#'B ~ PR For ¢, h, k € F2, we recall the following identities

(3.8) [glo =1

(3.9) lg(h — )k =[h—1]

(3.10) o7 —1i=—[g—1h

(3.11) [gh =11 =[g— 11 + [ — 1]
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We have
gro(rrow) = ([Yilo —[X1¥1]o 0)
= (1 -1 0) = ITow,
where the second equality follows from identity (3.8) for applied to ¢ = Y7 and to g = X1Y7.
On the other hand,

Y, (X = Dh (X1 — 1] el
gri(red) = | [y =1 | = (-1 |=[-fi]| =rcol
0 0 0

where the second equality follows from identity (3.9) applied to (g, b, k) = (Y, ', X1, 1) and from
identity (3.10) applied to g = Y;.

For the last diagram, it suffices to prove that gri(rp)(X; — 1) = rp(e;) (i € {0,1}), under the
isomorphism gr7'® ~ PR, We have

XY X - D XX =D 0
gri(rp)(X1 —1) = [—(Y1 = 1)l XiYi—-1Dh 0
0 0 0

X1 =11 —[Xi—1 0
=|-Mi—-11 M—-1; 0
0

0 0
€1 —€1 0
=|-f1 [ 0] =rple),
0 0 0

where the second equality follows from identity (3.9) applied to (g,h,k) = (X1Y; ', X1, 1),
(g,h, k) = (X1,X4,1) and to (g, h, k) = (X1,Y1,1). On the other hand, we have

[Xo — 1)1 0 0
gri(rp)(Xo —1) = 0 [(X1Y1)"'YoY: — 11 [(X1Y1) (1 = X' X' Yo)YoYa )y
0 (VoY1) ' Xo(1 — X1)YoVi1 [Xo— 1+ (1 — XoX; ' Xy HY, 'Yovi)y
[Xo— 1)1 0 0
= 0 X111 +Yo— 1)1 [Xo—1]1 +[X1 — 1)1 = [Yo — 1)1
0 —[Xl—lh [X0—1]1+[X1—1]1
€0 0 0
= 0 —e1 + fO —€oo — fO )
0 —eq —€oo

where the second equality follows from these identities in I,/ 112;2:

_ _ _ 3.9 _ 3.11 _
(X Y)Yy — 1) = [Y7 H(X 'Y — DY)y ) (X7 'Yy — 1)y (310) (X7t =1+ [Yo— 1)1
3.10
CL0 x4 Yo — 11,
and
_ _ _ 3.9 _ _ 3.11 _ _
[(4) 71 = XX Yo veval B - X o)l P2 - (X - 1 - (G 1 - Y - 1
3.10
G (o — 1)+ X0 — 1y — [Yo — 1)1,
and

_ 3.9
[(YoY1) ™' Xo(1 — X1)YoYi)h &2 —[X1 — 1]y,
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and
[Xo— 1+ (1= XoX7 Xy vovil ) (X0 — 1)1 — (XXX — 1],
(3.11) [Xo— 11 — [Xo— 1 — (X7 — 1), — [Xg ' — 1],
G190 — 1]y + [X1 — 11
This concludes the proof of the isomorphism claim between the two objects of k-BFSg,. O

3.5. The image of OPR in Mor(k-alg,,) and the coproduct A7 PR Applying the functor

k-BFSg — Mor(k-alg,,) given in Sec. 2.3.3 to the object OPR given in (3.7), one defines the
algebra morphism

(3.12) Agor k@ (PR, ) = 7P e 77 PR,
Explicitly, for v € ZPR we have
Agpr (v) = rrow - rp(v) - reol,
On the other hand, recall from [EF1, Sec. 1.1] the subalgebra # PR of PR given by
PR .= k@ “WDRel.

There is an algebra morphism k @ (ZPR,..,) — #PR given by v + v -e;. It is obviously
surjective, and it is injective since right multiplication by e; is an injective endomorphism of
7PR. On the other hand, it follows from [EF1, Sec. 1.2] that the algebra #PR is freely
generated by

(3.13) eger for n € Z>o.
An algebra morphism A” PR . gyDR _ gyDR & 9p'DR ig given by (see [EF1, (1.2.1)])
n—1
A7 PR(ele) = elley @ 1+ 1@ effer — Z eher @ e ey,
k=0
for n € Z>o.
Theorem 3.5.1. The following diagram
oy’ DR A”.DR 99'DR gy DR
(3.14) :i l
A DR
k@ (%DR7 ,61) mat , 9rDR ® DR

commautes.

Proof. Since all arrows of diagram (3.14) are algebra morphisms, it suffices to establish the
commutativity through evaluation on a system of generators of 7 PR, which we take to be the
ones given in (3.13).
Let n € Z>o. The image of ele; by the composition # PR — (#PR @ wPR) — (PR @ 7PR)
is given by

n—1

eper — epe1 @1+ 1®@epe; — Z elgel ® eg_k_lel.

k=0
On the other hand, the image of efle; by the composition %P} ~ (k @ (7' PR, -61)) — (PR ®
7 PR is given by

eper — rrow - rp(eq) - reol.
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We have
t
rrow - rp(eg) - rcol = (trcol - pleg) - trrow)
n—1
=epe1 @1 +1®eje; — 261561 ® eg_k_l(n,
k=0
where the last equality comes from [EF1, Lemma 5.7]. O

Remark 3.5.2. Under the identification # PR ~ k@ (PR, ..,), the commutativity of diagram
(3.14) enables us to obtain that the image of Appr lies in WPR @ WPR as well as the identity

Agpr = A7 PR

mat

Thanks to [EF1, Proposition 2.8], the graded algebra isomorphism gr(Z®) ~ 7"PR induces a
graded algebra isomorphism gr(#'B) ~ PR, An alternate proof of [EF1, Proposition 2.16] is
enabled by the setting introduced in this paper, and is displayed in the following result:

Corollary 3.5.3. The following diagram of k-alg,, morphisms

gr(A7B)

gr(W'B) y gt (WB @ W)
9y DR A7 DR , 9'DR g 9y-DR
commautes.
Proof. Let us consider the following cube
gr(A@n]?at fil
grk @ (7, x,-1)) : gr(7P @ 7P)

/ (A7 B /
gr(W'®) 8 g (W o WE)
DR ., /DR DR
R e
WBR A7 DR oy’ DR ® 9y’ DR

It is immediate that the left and right diagrams commute. The lower diagram commutes thanks
to Theorem 3.5.1. Thanks to Corollary 3.3.5, the upper diagram is obtained by applying the gr
functor to the commutative diagram of Theorem 3.2.1, proving its commutativity. By applying
the functor k-BFSy — Mor(k-alg,,) to the isomorphism gr(0B . ) ~ OPR from Proposition

mat,fil mat
3.4.6 then using the equality gr(Ags ﬁl) = Agr(@B o) obtained from from the right hand side of
mat, mat,

the commutative diagram of functors (0.2), we deduce that the diagram in the back is commu-
tative. Finally, this collection of commutativities enables us to deduce that the front diagram
commutes, thus proving the result. O
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4. THE OBJECTS OB, 68 anDp OPR

In this section, we present an alternative construction of the bimodules from Sec. 3. This
construction is geometric, based on the groups and Lie algebras corresponding to braids (see
[EF1]). It gives rise to a graded bimodule MP® (Proposition-Definition 4.5.3) and a filtered
bimodule MP (Proposition-Definition 4.2.3), which are equipped with a bimodule morphism
MPR s or(MB) (see (4.28)). The bimodules MP and MP® are respectively related by isomor-
phisms to the filtered and graded bimodules of Sec. 3 (see Theorems 4.3.4 and 4.5.4), which
enables one to equip them with factorization structures by pullback (Proposition-Definitions
4.7.1 and 4.7.3) and to prove that MPR — gr(MP) is an isomorphism (Theorem 4.6.4).

4.1. Betti geometric material. Let K4 be the braid group with four strands, that is, the group
presented by generators xi9, 13, £14, 23, T24 and x34 which satisfy the following relations

(i) (a:ijxik%-k,xij) = (mijxikxjk,xik) = (a:ijxika:jk,xjk) =lfori<j<ke H1,4]].

(il) (z12,734) = (¥13, T19 T24712) = (T14, T23) = 1.
Let wy := w12213T23714724234. One checks that wy is a generator of the group Z(K4). One then
defines

Pl = Ky JZ2(Ky) = Ky {wa).

We shall abusively use the same notation the generators of K4 and their classes in P;.

Lemma 4.1.1 ([EF1, Lemma 7.6]). (a) There are group morphisms pr,,pr,,pr. : Py — F»

given by
x T12 Z13 T4 | T23 T4 Z34
pr(z)| 1 1 1| Xo | (X1X0)™ ' | Xy
pro(z) | 1 | (XoX1)™'| Xo | 1 1 X1
pr.(z) | X1 | (XoX1) ™" | Xo | Xo | (X1Xo)™' | Xy

ere 18 a group morphism £ . Fo — gen 0y Xg = T23 an 1 T12. 18 suc a
b) There ¢ hism £ : F: P g by X dX It i h that
ES o E = idFQ.

Definition 4.1.2. Define pr, : P5 — FZ to be the group morphism p (pr,(p), pr,(p))-
We assign to this group morphlsm and to each group morphism of Lemma 4.1.1 the followmg
morphisms of k-alg:

(a) kgj kP — 7B, for j € {1,2,5}; (b) kpr , : kP5 — 7B o 78B;

(c) kl: 7B — kP:.
Recall that ker(kpr ) is a two-sided ideal of kPZ. This induces, in particular, a natural right
kP5-module structure on ker(kpr ).

Lemma 4.1.3. The map (kP?)®3 — ker(kpr,) given by

() Py, P3) > (215 — 1)p, + (225 — 1)p, + (w35 — 1)p,
is a right kP:-module isomorphism, where x15, x25 and x35, given by x15 = (x12x13m14)_1,

To5 1= (T12T23724) "' and x35 1= (T13w23734) 1, freely generate ker(kgf)).

Proof. This is analogous to [EF1, Lemma 7.10]. The two-sided ideal nature of ker(kpr, ) enables
one to replace left actions by right actions in this proof. (I
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4.2. A Betti bimodule (72 @ 7B, 7B, MB, rp).

Lemma 4.2.1. The algebra morphism kf : 7B — kP: equips the k-submodule ker(kg5) of
kP? with a (7B, kP)-bimodule structure.

Proof. Recall that the k-submodule ker(kpr,) of kP] is a two-sided ideal of kPy. This naturally
equips it with a (kPg, kP¥)-bimodule structure. Pulling back this structure by the algebra
morphism k¢ : 78 — kPZ, one equips ker(kpr,) with the structure of a (7B, kPs)-bimodule.
Its right module structure is that of ker(kES), and its compatible left module structure is given
by

4
7?55 kP¢ — Endicps-mod(ker(kpr, ).
where the second arrow is given by the left kP:-module structure of ker(kgf)). |

Lemma 4.2.2. The algebra morphism kpr,, : kP — 7B B equips the k-module 7B @ 7B
with a (kPZ, 7B @ 7'B)-bimodule structure.

Proof. It is immediate that the algebra 7B ® B is naturally a right (78 ® ZB)-module. On
the other hand, let us consider the composition

k
kP; —2 78 @ 7 ~ Endgngy5)mea(7" @ 7P),

where the End (98578 rmod (7B @ 7B) ~ 7B @ 7B is the algebra isomorphism given by the

evaluation at 1 as in Proposition-Definition 2.3.2. This equips 72 ® 7B with a compatible left
k P5-module structure. t

Proposition-Definition 4.2.3. The (78, kPZ)-bimodule ker(kpr,) and the (kPz, 7B @ 7B)-
bimodule 7B @ 7B define a (7B, 7 @ 7B)-bimodule

MP := ker(kpr,) ®xpy (75 @ 7P).
More explicitly, the left 7"B-module structure on MPB is given by
rp: 7" = End(gp598) mod(MP), v+ (p@w — kl(v)p @ w) .
Proof. This follows from Lemmas 4.2.1 and 4.2.2 and Proposition 2.1.4. (Il
The remainder of this paragraph is dedicated to the proof of the following result:

Proposition 4.2.4. The bimodules (7 B@7 2,78, MP, rp) and (7Be7 B, 78, (7 P77 )3, rp)
are isomorphic.

To prove the proposition, we first establish that the algebra morphism rp : 7B M (WB ®‘7B)
is related to the geometric material introduced in Sec. 4.1.

Lemma 4.2.5 ([EF1, Lemma 4.1 and Sec. 7.2.2]). (a) For any p € kPg, there is a unique
matriz (a;;(p))ijen 3] € H3(kP5) such that

(4.1) (wis — 1) p=>_ a;(p) (55— 1).

i=1
(b) The map
w kP — M3(kP5), p— (Qij(g))i,je[[l,S]]

s an algebra morphism.
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Lemma 4.2.6. (a) For any p € kP53, there is a unique matriz (b;;(p)); jeq,3) € H3(kPy) such
that

p(zj5 —1) =Y (25 — 1) by(p)-
(b) The map
rw : kP — Ms(kPY), p (bij@))i,je[[l,?)]]
s an algebra morphism.
Proof. Both (a) and (b) are right-analogues of Lemma 4.2.5. O
Lemma 4.2.7. We have (equality of algebra morphisms kPs* — M3(kP5*))
(@ = Adgiag(e1s.05.035) 1 © H3(0Pps) © (=) 0 @@ 0 0ppy,
where oppz and ﬂg(oppg) are given by Definitions A.1 and A.5 respectively.

Proof. Let p € kP and i € [1,3]. Applying the antimorphism op pr to the equality (4.1) enables
us to obtain

3
OPpz (p) ( Z OPP* ( (P)) .
7=1
Set ¢ := opp: (Q)(—xigl). We then have

NE

(4.2) g (s —1) = (53 = 1) opp; (ai; (25 )opr; (@) )

.
Il
—

I
E

(zj5 — 1) (—z;5") Op py (Qz'j ((—33[51)0191»; @>) '

.
Il
—

Let us evaluate b;; := (—x5h) opp; (Qij (( )opp*( ))) for any j € [1,3]. We have

bji = (—a5") opp: (a; ((—ai5 opp: () ) = (25" Jopp: (Z ay(~25 )y, <opp*<q>>)

— (a3 )opp; (—o55" ai;(0pp; (0))) = 25" oppy (i (0pp; () i,

where the first equality comes from the fact that w is an algebra morphism and the second
equality follows from the identity a;,(—z;5') = —x;5 0k, for any k € [1,3]. Therefore, in
equality (4.2), we have

3
q (w5 —1) = Z(ij) —1) x5 opp:(a;;(0pPps(q))) @is-
j=1

This implies the equality

r@(g) = diag(:n15,x25,x35)_1 /ﬂs(opp;) (t(E(OPP; (Q)))) diag(w15, v25, 35),
from which one immediately deduces the equality for p thanks to the bijectivity of the map
p > Opps (p)(—z;5') = g, for any i € [1,3]. O

Lemma 4.2.8. We have (equality of algebra morphisms 7B — M3(7B @ 7'B))
rp = Ms3(kpr ,) o rw o kL.
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Proof. Recall from [EF1, (7.2.1)] the equality of algebra morphisms 7B — #3(7B @ 7'B):
p = dlly(kpr,,) 0w o kL.
We have
0= Adgiag(vi X1, (X0 x1) -1y, ' vovs) -1 © H3(0PF) © o' (=)epoop
= Addiag(Yl,Xl,(XOXl)*lYleoYl)*l o M3(oppz) © "(=) ot ( ) cmokloopp,
2)°

- Addiag(yh)ﬁ,(X0X1)71Y1_1Y0Y1)’1 © ﬂ?’(opFQQ) ° %3(kp1" ( )omoktoopp,

= Addiag(gm(xls),gw(I25)7E12(:635))*1 o *%3(kE12) o .%3(0})]35*) © (_) cWwoopps© k(¢
= M3(kpr,,) © Addiag(x15205.255)1 © H3(0Ppy) © ‘(—)owmo oppy okl
= Ms3(kpr ,) o rm o k¢,

where the third equality comes from identity (A.1), the fourth one from Lemma A.2 applied to
both group morphisms pry, and £ and the sixth one from Lemma 4.2.7. O

Lemma 4.2.9. The map (7B @ 7B)®3 — MPB given by
3
(43) (al,a2,a3) — Z(l‘lf) — 1) ® a;
=1
is a right (7B @ 7'B)-module isomorphism.
Proof. Recall from Lemma 4.1.3 the right kP?-module isomorphism (kP;)®3 — ker(kpr,). The

left kPZ-module structure on 7B ® 7B given by Lemma 4.2.2 enables us to apply the functor
— Qxpy (7B @ 7'B) to this isomorphism. This induces a right 78 ® ZB-module isomorphism,
which is given by the announced formula. O

Proof of Proposition 4.2.4. It follows from Lemma 4.2.6 that M® is a (kPs, 7B 27 B)-bimodule
for the left action given by .#3(kpr ,) o rw, and that the map (4.3) is an isomorphism of

(kP?, 7B @ 7°B)-bimodules. Applying the pull-back by the morphism k¢ : 7B — kP; it follows
that MPB is a (7B, 7B @ 7"B)-bimodule for the left action given by AMs(kpr ) o re o ki, and
that the map (4.3) is an isomorphism of (7B, 7B ® 7"B)-bimodules. This proves the wanted
result since rp = /%3(kE12) o rw o k¢, thanks to Lemma 4.2.8. O

4.3. A filtration on (7® @ 78,78, MP rp). Recall that the group algebra kP is naturally
equipped with a filtration
FOkP = kP; and for n > 1, F"kP; = Ip.,
5

where Ip: denotes the augmentation ideal of the group algebra kP, which is the k-submodule
of k P} generated by the elements p—1, where p € PZ. The pair (kPZ, (F"kPZ)nez) is an object
of k-algg. Additionally, recall that the k-module ker(kpr, : kP; — kFb) is a two-sided ideal
kP, and therefore, a (kP:, kPZ)-bimodule.

Lemma 4.3.1. For any n > 0, the morphism
Fkpr , : F'kP; - F (VP @ 7P)
18 surjective.

Proof. The group morphism pr,: P = F2 is surjective, since xa3 — Xo, x14 +— Yo, X34T13214 —>
X7 and z93xo4x34 — Y7. This 1mphes the surjectivity of the morphism kpr kP — kF2 and
then of the induced morphism [ pr— 1 F2> which in turn implies the surJect1V1ty of the morphism
I}’é* —>I”2 for any n > 0. ]
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Proposition-Definition 4.3.2. A filtration (F" ker(kpr,))nez of the k-module ker(kpr,) is
given by
F" ker(kpr,) := F"kP; Nker(kpr,),
for n > 0. Equipped with this filtration, ker(gg)) is a filtered (kPZ,kP;)-bimodule.
Proof. The first statement follows from the fact that (F"kP;),cz is a filtration of kPS. The

second statement follows from the fact that (F"kP;),cz is a filtration of kP; as a (kPZ, kFP;)-
bimodule. g

Recall from Proposition-Definition 4.2.3 the (7B, 7B @ 7"B)-bimodule
M = ker(kpr, ) @xp: (77 @ 7°).

Proposition-Definition 4.3.3. For n > 0, define

F"MPB = im (97" ker(kpr, ) — ker(kpr,) @xp: (7P @ 7P), 2w @ 1) :
Then, the pair (MB,(F"MPB),cz) is a filtered bimodule over the pair formed by the filtered
algebras (7B, (F"VB)pez) and (VB VB, (FUVB @V B))nez).
Proof. Let m,a,b>0and p € F™"MP, a € FY (7B 2 7P), p € F*7B.
By definition of #™MP, there exists 1 € F™ ker(kES) such that g = ® 1. Then

Bou=kLBE 1.
Since k{ is compatible with filtrations, ké(3) € gkag‘, which by Proposition-Definition 4.3.2
implies k{(B)n € Fotm ker(kpr,), hence 3 - € FrmMB.
Thanks to Lemma 4.3.1, the morphism % “kpr,, : FkP; — FUVB @ 7B) is surjective. This
surjectivity implies the existence of & € kP such that kpr (@) = a. Then
ra=pRa=npax® l.

Finally, Proposition-Definition 4.3.2 implies that ga € F™¢ ker(kgS), which implies that
W-a € FmtaMB. U
Theorem 4.3.4. The right (7B @ 7'B)-module isomorphism (7B @ 7B)®3 — MPB given in

(4.3) is an isomorphism of filtered modules with respect to the filtrations given in Lemma 3.3.2
and Proposition-Definition 4.3.3.

Proof. Let us show that for any a > 0, the isomorphism (7B ® % B)®3 — MP induces a bijection
FN VP @7 ~ FoMP,

For this, we fix a > 0 and we follow these steps:
Step 1 Let us show that the isomorphism (7B @ 7B)®3 — MP induces an injection

(4.4) FN 7B o 7B — FoMP.
Let (a1, a2,a3) € F* 1 (7P @ 7P)®3. Thanks to Lemma 4.3.1, the morphism %~ 'kpr ,
FolkpPr —» FoU7B @ 7B) is surjective. This surjectivity implies the existence of
(a1, ag,a3) € (F41kP2)®3 such that gaflkgu(&i) = o for any 7 € {1,2,3}. Therefore, the
image of (a1, as, a3) by the isomorphism (7B @ 7B)®3 — MPB is given by

3 3

Z(l’ig) — 1) R a; = Z({L‘Zg) — 1)5&1 ® 1.

=1 i=1
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By construction, we have

3
x5 — 1) € ker(kpr,) N FkPF = F%ker(kpr,).
Ll 5 Pl
i=1
The statement then follows.

Step 2 Denote by Fj3 the free group with three generators. Let us show that there exists a
k-module isomorphism

(4.5) kF; © kFy ~ kP

Thanks to [EF1, Lemma 7.9 1)], we have an injective group morphism F3 — PZ such that
we identify the generators of F3 with x15, T95 and x35. We then have the following split exact
sequence of groups

{1} » B — P; 25 B — {1},
with splitting £ : Fy — PZ. Applying Proposition C.1(a) to this sequence we obtain a k-module
isomorphism kI3 ® kFy ~ kP? induced by the bijection? F3 x Fy — P, (u,u) + u - £(u).
Step 3 Let © : F» — Aut(F3) be the group morphism given by h — (0 :  +— £(h) z £(h)™1).
Let us show that

(4.6) O} = idpg, Vh € Fo.

Since © is a group morphism, it suffices to show identity (4.6) for h = Xy and h = X; and
since O©x; (i € {0,1}) is a group morphism, it suffices to evaluate at the generators of F3. One
has

Ox, (2)5) = T2315513; and Ox, (z)5) = T122j507y
for j € {1,2,3}. The injection F3 — P enables us to evaluate these identities in PZ. Further-
more, thanks to [EF1, Lemma 7.3], one may compute these identities in K5. We will abusively
use the same notations for the generators of P;* and K5. One has
Ox, (T15) = T23T15T93 = T15,

where the last equality follows from the fact that one has from [EF1, (7.1.3)] that (z15,z23) = 1
in K5. Next, one has

-1 —1 -1 -1 -1 -1 -1 -1
G)Xo (1’25) = X23T25T93 = T23X25T 35 L35T93 = X35 L23X25XL35L93 = Lgg L25L35L23Lo3 = T3y L25T35,

where the third equality follows from the fact that (zesxas, x3_51) = 1 and the fourth one from
(223, T25w35) = 1; with both identities in K5 being a consequence of [EF1, (7.1.2)]. Next, one
has

—1 —1 —1 —1 -1
@X() (1635) - .’E23£L‘35£E23 - $23($25$35) .’E25I’35[E35.’E23 - (CL‘25ZL‘35) .’E23I‘Q5$35.’E35$23
-1 —1 —1 —1 —1

= (225%35)  T35223%25T35%03 = (T25%35)  T35L25L35223%05 = (T25%35)  T35L25T35,

where the third equality follows from the fact that (23, (z25735)~ 1) = 1, the fourth one from
(r23225235, x35) = 1 and the fifth one from (xes, z25235) = 1; with both identities in K5 being
a consequence of [EF1, (7.1.2)]. Next, one has

-1 -1 -1 -1 -1 -1 -1 -1
@Xl (3615) = T12T15L19 = T12T15T 95 L25T19 = Lo5 T12X15X25L19 = Log L15L25L12L 19 = Loy L15T25,

where the third equality follows from the fact that (zj2215, x551) = 1 and the fourth one from
(212, z15795) = 1; with both identities in K5 being a consequence of [EF1, (7.1.2)]. Next, one

20ne may also refer to [EF1, Lemma 7.9. 2)].
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has
Ox.( _ -1 1 -1 “1 —1
X, (T25) = T12@25% 15 = T12(T15%25)  T15T25T25T 15 = (T15%25)  T12T15T25T25T 9
—1 —1 1 —1 ~1
= (z15%25) " T25T12215T25% 19 = (T15%25)  T25215T25% 12015 = (T15%25)  T25L15T25,

where the third equality follows from the fact that (z12, (z15725) 1) = 1, the fourth one from
(r12715225, x25) = 1 and the fifth one from (x12, z15225) = 1; with both identities in K5 being
a consequence of [EF1, (7.1.2)]. Next, one has

—1
Ox, (z35) = 1235275 = T35,

where the last equality follows from the fact that one has from [EF1, (7.1.3)] that (z12,235) = 1
in K5. This implies that

Ox, (1) = aip O, (213) = (w35 w15w25)™ = 2P
OF, (433) = (w35 wa535)™ = 258 O (259) = ((z15m05) ' wasw15225)"" = 5P

0%, (238) = ((w25ws5) ' wsswaswss)™ = a5l OF, (¢8h) = 23

This proves that @“}5 = idpas for i € {0,1}, which establishes statement (4.6).
Step 4 Let us show the equalities

(4.7) Y F K@ FCkF, = ( Y e I;2> N (Ip, @ kF)
b+c=a b+c=a
b>0
and
(4.8) F“ker(kpr,) = FkP5 Nker(kpr,) = I Nker(kpr,).

Equality (4.8) is immediate. Let us prove equality (4.7). The inclusion (C) being immediate,

let us prove the converse. Indeed, let x = Z Tpe € Ipy, @ kFy with a3, € I%S @ If,. Since

b+c=a
x € Ip, ® kFy, it follows that ep, ® idgp, (x) = 0. Therefore,

Z EFy X idkF2 (.%‘b’c) = 0.
b+c=a

Since ep, ® idgp, (2p,) = 0 for b > 0, it follows from this equality that ep, ® idkp,(20,4) = 0,
which implies that zo, € Ip, ® I}, , thus

x = Z Tpe € Z I?;S@I%Q.

b+c=a b+c=a
b>0

This concludes the proof of equality (4.7).
Step 5 Let us show that the isomorphism (4.5) induces the following isomorphism

(4.9) > F'kF3 @ FC kFy ~ Fker(kpr,).

b+c=a
b>0

First, as in the proof of [EF1, Lemma 7.10], one checks that the commutativity of the diagram

KFy @ kFy — 9

P5
lkpr
epy ®idir,

kF,
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implies that the isomorphism (4.5) induces an isomorphism
(4.10) Ir, ® kFy ~ ker(kpr,).

Second, identity (4.6) enables us to apply Proposition C.1(b). From this, one deduces that the
isomorphism (4.5) gives rise to an isomorphism

(4.11) > Ip @ If, = I

b+c=a
It follows from (4.10) and (4.11) that the isomorphism (4.5) induces an isomorphism between
the intersection of the left-hand sides and the right-hand sides of these isomorphisms. These
intersections are respectively given by (4.7) and (4.8), which implies the announced statement.
Step 6 Let us show that

3
(4.12) Foker(kpr,) = ¥ (w5 — 1)F*'kP;.
=1
3
Recall that 1%3 = Z(a% — 1)[%;1. This implies
=1
3 3
(413) > FKFBRFKkFy =) (z5—1) Y F KkBRF K~ (u5-1)F* kP,
b+c=a =1 b+c=a—1 =1

b>0
where the isomorphism is obtained from (4.11) by replacing a with a — 1. Finally, equality
(4.12) follows from (4.9) and (4.13).

Finally, one deduces that the map F* (7B @ 7B)® — ZoMPB is injective from (4.4) and
surjective from (4.12), thus proving the theorem. O

4.4. De Rham geometric material. Let t; be the infinitesimal braid Lie algebra with four
strands, that is, the Lie algebra presented by generators t1s, t13, t14, tos, to4 and ts4 which satisfy
the following relations

(i) [tijatik —|—t]‘k] =0fori<j<ke [[1,4]].

(ii) [tij, tr] =0 for i < j, k <l € [1,4] such that {i,j} N {k, 1} = @.
Let z4 := t1o 4 t13 + to3 + t14 + tog + t34. One checks that z4 is a generator of the Lie algebra
Z(t4). One then defines

p5 = t4/Z(t4) = 14/(24).

We shall abusively use the same notation the generators of t4 and their classes in ps.

Lemma 4.4.1 ([EF1, Sec 5.1.2]). (a) There are Lie algebra morphisms pry, pry, prs : ps — fo
given by

t t12 | t13 | t1a | to3 | toq | t34
r ()| 0| 0|0 | e |ex]|er

pry(t) | 0 |exc| e | 0| O | e

Es)(t) e1 | e | €0 | €0 | e | €1

(b) There is a Lie algebra morphism £ : fa — p5 given by eg — to3 and ey > ti2. It is such that
prs o £ = idj,.

Definition 4.4.2. Define prys : p5 — 3 to be the Lie algebra morphism p ~ (pry(p), pra(p)).
We assign to this Lie algebra morphism and to each Lie algebra morphism of Lemma 4.4.1 the
following morphisms of k-alg:
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(a) For j € {1,2,5}, U(pr;) : U(ps) = 7P (b) Ulprya) : U(ps) — (77°1)%%

(c) U(L) : PR = U(ps).

Recall that ker(U(prs)) is a two-sided ideal of U(ps). This induces, in particular, a natural right
U (ps)-module structure on ker(U(prs)).

Lemma 4.4.3. The map U(ps)®® — ker(U(prs)) given by (p1,p2,p3) + tisp1 + taspe + t35p3
is a right U(ps)-module isomorphism, where t15, tos and tss given by ti15 := —t1a — t13 — t14,
tos := —ti19 — toz — tog and tss := —t1o — t13 — t14 freely generate ker(U(prs)).

Proof. This is analogous to [EF1, Lemma 5.5]. The two-sided ideal nature of ker(U (pr5)) enables
one to replace left actions by right actions in this proof. Il

4.5. A De Rham graded bimodule (7P} @ PR PR MPR rp),

Lemma 4.5.1. The graded algebra morphism U({) : PR — U(ps) equips the graded k-
submodule ker(U (prs)) of U(ps) with a graded (7"°PR,U(ps))-bimodule structure.

Proof. Recall that the graded k-submodule ker(U(prs)) of U(ps) is a two-sided ideal of U(ps).
This naturally equips it with a graded (U(ps),U(ps))-bimodule structure. Pulling back this
structure by the graded algebra morphism U () : PR — U(ps), one equips ker(U(prs)) with
the structure of a graded (PR, U(ps))-bimodule. Its graded right module structure is that of
ker(U(prs)), and its compatible graded left module structure is given by
U(¢

7R 205 Ups) — Endy s eamod (ker (U (pr))),

where the second arrow is given by the graded left U(ps)-module structure of ker(U(prs)). O

Lemma 4.5.2. The graded algebra morphism U (prys) : U(ps) — ZPR @ 7PR equips the graded
k-module 7’PR @ PR with a graded (U(ps), 7 PR @ 7"PR)-bimodule structure.

Proof. Tt is immediate that the graded algebra 7 PR @ 7"PR is naturally a graded right (7’ PR @
7"PR)-module. On the other hand, let us consider the composition

U(p5) U(pryo) %-DR ® %'DR ~ End(cyDR@cyDR)_rmod (%'DR ® %DR)7

where the End(WDR(@%DR)_rmOd(%DR ® 7'PR) ~ 7PR @ 7’PR is the graded algebra isomorphism

given by the evaluation at 1 as in Proposition-Definition 2.3.2. This equips 7 PR ® PR with a
compatible graded left U(ps)-module structure. O

Proposition-Definition 4.5.3. The graded (7R, U (ps))-bimodule ker(U(prs)) and the graded
(U(ps), PR @ 7PR)-bimodule PR @ PR define a graded (7’PR, 7 PR @ 7"PR)-bimodule

MPR = ker(U(prs)) ®u(py) (7R @ 7PF).
More explicitly, the graded left 7”PR-module structure on MPR is given by
rp: 7PR End (g pr g7 pR) rmod (MPR) " v (p@w e UW)(v)pw).
Proof. This follows from Lemmas 4.5.1 and 4.5.2 and Proposition 2.1.4. U
The remainder of this paragraph is dedicated to the proof of the following result:
Theorem 4.5.4. The graded bimodules
(PR @ PR /DR VDR y5) gnd (7PR @ 9PR /DR (/DR g g/DR)®3 | )

are isomorphic.
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To prove the theorem, we first establish that the graded algebra morphism
rp: PR — 3 (7PR @ PR
is related to the geometric material introduced in Sec. 4.4.

Lemma 4.5.5 ([EF1, Lemma 4.1 and Sec. 5.2.2]). (a) For any p € U(ps), there is a unique
matriz (a;;(p))ijen,s) € Hs(U(ps)) such that

3
(4.14) tis p=Y_ aij(p) tjs.
=1

(b) The map
@ Ulps) = M3(U(ps)), > (aij(P); jep g

1 a graded algebra morphism.

Lemma 4.5.6. (a) For any p € U(ps), there is a unique matriz (bij(p));jeqi,3] € H3(U(ps))
such that

3
pljs= th bij (p)-
=1

(b) The map
rw : U(ps) = Ms(U(ps)), p+ (bi(P); jep 3

s a graded algebra morphism.
Proof. Both (a) and (b) are right-analogues of Lemma 4.5.5. O
Lemma 4.5.7. We have (equality of graded algebra morphisms U (ps) — Ms(U(p5)))
rw = M3(Sp;) 0 (=) 0w o Sy,
where Sp; and M3(Sp;) are given by Definitions A.3 and A.5 respectively.

Proof. Let p € U(ps) and i € [1,3]. Applying the antimorphism Sy, to the equality (4.14)
enables us to obtain

3
Sps (p) tis = ths Sps (aij(p)) -
=1

Set ¢ := Sp,;(p). Since Sy, is an involution, it follows that Sy, (q) = p. We then have
3

q tis =) 15 Sps (aij(Sps(a)))

j=1
Setting bj; = Sp, (@i (Sps(¢))), this implies the equality
rew(q) = Ms(Sps) ("(w(Sps(2))))
from which one immediately deduces the equality for p thanks to the bijectivity of Sy;. O
Lemma 4.5.8. We have (equality of graded algebra morphisms ¥ PR — 43(7PR @ 7PR))
rp = JMs3(U(pryz)) o rw o U(C).

Proof. Recall from [EF1, (5.2.5)] that we have the following equality of graded algebra morphisms
VPR — t3(7PR @ 7PR):
p = Ms3(U(pryy)) 0w o U(().
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Therefore,
o = l3(Syz2) o (=) 0 po Sy, = Mly(Syg2) 0 (=) 0 M3 (U(prya)) 0w 0 U(E) oSy,
= M3(S;2) o M3(U(pry2)) 0 "(=)owoU() oSy,
= M3(U(pryy)) o M5(Sp,) 0 '(—) 0w 0 Sy, o U(L)

= M3(U(pryp)) o rw o U(L),
where the third equality comes from identity (A.1), the fourth one from Lemma A.4 applied to
both Lie algebra morphisms pry, and ¢ and the last one from Lemma 4.5.7. O

Lemma 4.5.9. The map (7PR @ 7PR)®3 — MPR given by

3

(4.15) (a1,a2,a3) = Y ti5 @ a;

i=1
is a graded right (7"°R @ 7"PR)-module isomorphism.
Proof. Consider the graded right U (ps)-module isomorphism U (p5)®® — ker(U(pr;)) of Lemma
4.4.3. The graded left U (ps)-module structure on 7R @ 7"PR given by Lemma 4.5.2 enables us
to apply the functor — ®g(ps) (7’PR @ 7"PR) to this isomorphism. This induces a graded right
(7’PR ® 7"PR)-module isomorphism, which is given by the announced formula. O
Proof of Theorem 4.5.4. 1t follows from Lemma 4.5.6 that

MP® = ker(U (prs)) ®@pp) (7P @ 7P1)

is a graded (U(ps), 7 PR ® 7"PR)-bimodule for the left action given by .#3(U(pryy)) o rww, and
that the map (4.15) is an isomorphism of graded (U (p5), 7 PR ® ZPR)-bimodules. Applying the
pullback by the graded algebra morphism U () : PR — U(ps) it follows that MPR is a graded
(7PR, PR @ 77PR) bimodule for the left action given by 3(U(prys)) o rww o U(£), and that

the map (4.15) is an isomorphism of graded (7'PR, 7 PR @ "PR)_himodules. This proves the
wanted result since rp = M3(U(pryy)) o rw o U({), thanks to Lemma 4.5.8. O

4.6. The isomorphism of bimodules gr(MP) ~ MPE, Recall from Proposition-Definition
4.3.3 that M is equipped with a filtered k-module structure. This defines the associated graded
k-module gr(MP). We construct a graded k-module morphism MP® — MB. Let us start with
the following lemmas:

Lemma 4.6.1. For n € Z, we have
(a) gry ker(kpr,) ~ ker(gr, (kpr,));
(b) er, ker(kgm) ~ ker(grn(kgu)).

Proof. This follows immediately from Lemma C.2 applied to the group morphisms pr.: Py — F
and pr , : P5 — FZ respectively. O
Lemma 4.6.2. (a) There exists a left U(ps)-module isomorphism
MPH o~ ker(U(pr5))/ker(U(pr5)) ~ker(U(prya));
(b) There exists a left kP -module isomorphism

MB ~ ker(kgg))/ker(kgg)) ~ker(kpr, ).

Proof. This follows from Proposition 2.1.5 with
(A,B, o, M) = (7% @ 7PF, U(ps), U(pry2), ker(U (prs)))

(resp. (A, B,p,M) = (7" @ 7P, kPg, kpr ,, ker(kpr,))). O
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Proposition 4.6.3. There exists a k-module morphism MPR — ar(MPB) such that
eis @1 [z55 — 1)1 ® 1, forie{l,2,3},
and is compatible with the right actions and the k-algebra morphism 7 PR @ 7PR — or(7B ®
7'B).
Proof. We will follow these steps:

Step 1 Construction of a k-module morphism

F" ker(kpr
(4.16) &y — mf pr) — — gr(MP),
nez F' ker(kpr,) + Z F “ker(kpr,) - " ker(kpr,, )
a+b=n

with compatible right actions.
Applying the functor gr to Lemma 4.6.2 (b), we obtain

(4.17) gr (MB) ~ gr (ker(kgf))/ker(kgf)) : ker(kgu)) .

Moreover, we have the equality

F " ker(kpr
& (ker(kprs)/ker(kprs) ~ker(kpr12)) - @ (epry) .
Pr — - nez F "1 ker(kpr,) + F" ker(kpr,) N (ker(kgs) . ker(kgu))

One therefore obtains a k-module morphism
(4.18)

D F " ker(kpr,) Ser (ker(kpr )/ ker(kpr. ) - ker(kpr ))
nez &1 ker(kpr, ) + Z F“ ker(kpr) - 7' ker(kpr ) — = =
at+b=n

given by taking the class of an element of #" ker(kpr,) in the source module to the class of the

same element in the target module. The morphism (4.16) is then constructed by composition
of (4.18) and (4.17).

The target of the k-module morphism (4.16) is a right module over gr (kPg‘ / ker(kg12)>, while
the source is a right module over

FIKP!
m m - =er(kPy) /er (ker(kpr )] .
g?z Fmker(kpr )+ F +HkP; / ( 12 )

The k-module morphism (4.16) is then compatible with these right actions and the morphism

(4.19) gr (kPY) / gr (ker(kgm)) er (kP5* /ker(kgm)) ,

which is an isomorphism since the filtration of ker(kpr ,) is induced by that of kP
Step 2 Construction of a k-module isomorphism

F " ker(kpr
(4.20) S (epr,) - ~ MPR,
neg F'T ker(kpr,) + Z F “ker(kpr,) - " ker(kpr , )
a+b=n

with compatible right actions.

Thanks to Lemma C.3 applied to ¢ = pr, and v = pr
(4.21)

@ F " ker(kpr,) N ker(gr, (kpr,))

ey FrH ker(kpr,) + Z F“ker(kpr,) - F* ker(kpr ,) ez Z ker(gr, (kpr,)) - ker(gr, (kpr ,))
a+b=n a+b=n

12° and to Lemma 4.6.1, we have
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The source (resp. target) is a right module over the k-algebra gr (kFP) / gr (ker(kgm)) (resp.

gr (kPY) / ker (gr(kg12)>) and the isomorphism (4.21) is compatible with the k-algebra mor-
phism

(4.22) gr (kP2) / gr (ker(kgu)) — gr (kPY) / ker (gr(kgm)),
which is an isomorphism by Lemma C.2.
Next, we have the equality

D ker(gr,, (kpr,)) B ker(gr(kpr,))

ne? Z ker(gr, (kpr,)) - ker(gr, (kpr,,)) ker(gr(kpr,)) - ker(gr(kpr,,))

a+b=n
Thanks to Proposition 2.1.5 applied to M = ker(gr(kpr,)), B = gr(kFPy) and A = gr(kF2),
using the surjectivity of ¢ = gr(kgm) : gr(kP2) — gr(kF?), which follows from surjectivity of
pryy ¢ P& — F3; it follows that
ker(gr(kg&)

ker(gr(kpr,)) - ker(gr(kpr,,

This k-module isomorphism is compatible with the right actions and k-algebra morphism
(4.24) gr(kFP;) /ker (gr(kgu)) — gr(kF3),

which is an isomorphism by the surjectivity of gr(kglz).
Finally, thanks to the graded k-algebra isomorphisms U(ps) ~ gr(kFPZ) and U(f2) ~ gr(kF»),
and the commutativity of the diagrams

(4.23)

7 =~ ker(gr(kpr,)) ®gr(kpy) gr(kF3).

r(kpr r(kpr_ )
gr(kPY) _srtery) gr(kFy) gr(kPr) — 2l oy (kED)
zl J/z and zl l:
Ul(prs) U(pri2) D2
U(ps) ————— U(f2) U(ps) —— U(fy”)

we obtain the following graded k-module isomorphism

(425)  Ker(gr(Kpr,)) @gers) gr(kF2) = ker(U(pr,)) Sy U(152) = MO,
which is compatible with the right actions and the algebra isomorphism
(4.26) gr(kF3) — U(552).

The announced isomorphism (4.20) is then constructed by composition of (4.21), (4.23) and
(4.25). It is compatible with the right actions and the k-algebra isomorphism

(4.27) gr (kPY) / gr (ker(kgw)) — U(522)

obtained by the composition of (4.22), (4.24) and (4.26).

Step 3 Conclusion.

Composing the morphisms (4.16) and 4.20 from Step 1 and Step 2 respectively we obtain a
k-module morphism

F " ker(k
(428) MDR ~ @ - er( E5) a
nez ' ker(kpr,) + Z F“ker(kpr,) - " ker(kpr )
a+b=n

— gr(MB).
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Finally, one may check that this morphism sends the element e;5 ® 1 € MPR to the element
(5 — 1)1 ® 1 € gr(MP), for i € {1,2,3}; and that it is also compatible with the right actions
and the k-algebra morphism

%DR ® %DR N gr(%‘B ® %B),
which coincides with the composition of morphisms (4.19) and (4.27).
]

Theorem 4.6.4. The graded module morphism MPR — gr(MPB) induces a bimodule isomor-
phism

(7PR @ 7 PR, 7 PR MPR rp) ~ (gr(7® @ 72), 17", gr(MP), gr(rp)).

Proof. Recall the following isomorphisms:

o (7PR g PRYE3 ~ MPR 5 a right (PR ® #PR)-module isomorphism and is given by
Theorem 4.5.4;

o gr(7B @ 7B)®3 ~ gr(MPB) is a right gr(7® ® 7'B)-module isomorphism and is given by the
filtered bimodule isomorphism of Proposition 4.2.4 to which one applies the functor gr;

o (7PR @ 7PRY®3 ~ or(7B @ 7B)®3 is a right module isomorphism over the isomorphism
gr(7B) @ gr(7B) ~ #PR @ PR and is given by Proposition 3.4.6.

Let us show that the following diagram

(%DR ® %DR)GQS = ; gr(%B ® %B)EBS
(4.29) % lﬁ
MPR » gr(MP)

commutes. To do so it is sufficient to show that the morphisms
(7PR @ 7PRYD3 s or(7B @ 7B)P3 - gr(MP) and (7PR @ 7PR)®3 5 MPR 5 or(MPB)

are equal as right module morphisms over the isomorphism gr(7® @ #B) ~ #PR g 7PR,

Therefore, it suffices to check this equality on the generators of (Z PR @ ZPR)®3 as a right

(7PR @ 77PR)-module. Denote by uj,uz,uz € (ZPR @ ”PR)®3 the canonical generators. For

i € {1,2,3}, the images of these elements by the above compositions are respectively given by
Ui > Uj —> [-732'5_1]1@1 and u; — e;5 @ 1 +— [IZ’5—1]1®1,

where i1, @2, ii3 are the canonical generators of the right gr(7® ® 7"B)-module gr(72 @ 7'B)®3.
Finally, the morphism MP® — gr(MP) is indeed an isomorphism since all other arrows of the
commutative diagram (4.29) are isomorphisms. O

4.7. Geometric construction of the bimodules with factorization structures 6P, @flﬁ
and OPR,

Proposition-Definition 4.7.1. Define the compositions
r:MB o~ (7B g 7B)#8 I B g 9B jng e 7B g B 2 (7B g 97B)S8 o VB,

where (7B @ 7B)®3 ~ MPB is the right (7® @ 7'B)-module isomorphism given in (4.3). Then
the tuple

08 = (7P 07", 75 MP 1p, X1 ~1,r,¢)
s an object of k-BFS.
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Proof. Thanks to Corollary 3.1.4 and Proposition 4.2.4, the result follows from Proposition 2.1.6
applied to
(A,B,M,p,e,7,¢) = (7P 07", 7", (7" @ 7°)%,rp, X1 — 1, rrow, reol)

and
(A, B M, p) = (7B 27,78 M" rp).

Recall from (3.6) and Lemma 3.3.1 that 72 and 7B @ 7B are objects of k-algg,.

Corollary 4.7.2. The filtration given in Proposition-Definition 4.5.3 define a filtered structure
on OB, which defines an object @f]igl of the category k-BFSg).

Proof. Thanks to Corollary 3.3.4 and Theorem 4.3.4, the result follows from Proposition 2.1.15
applied to @Eat’ﬁl and (7B @ 7B, 78 MB, rp). O
Recall from Sec 3.4 that PR and 7 PR @ #PR are objects of k-alg,,.

Proposition-Definition 4.7.3. Define the compositions
r: MPR ~ (7PReyPR)®3 T, o DRy DR 4nd ¢ . 7PRey PR SN (7 PRz PR3 ~ MPR
where (7PR @ 7PR)®3 ~ MPR s the right (7PR @ 7”PR)-module isomorphism given in (4.15).
The tuple

@DR = (%DR ® %'DR7 %’DR’ MDR’ rp’ e1, ,',,7 C)
is an object of k-BFSg;.
Proof. Thanks to Corollary 3.4.5 and Theorem 4.5.4, the result follows from Proposition 2.1.22
applied to

(A,B,M, p,e,r, c) = (7P R @ 7PR ¢PR (PR ¢ ¢ DRYD3 ) e1, rrow, reol)

and
(A,, B,,M/,p,) — (%‘DR ® %‘DR’ %‘DR’ MDR, rp)

APPENDIX A. THE MORPHISMS 0pg, Sg AND THE FUNCTOR ;s

Definition A.1l. For a group G, define opy to be the group algebra antiautomorphism of kG
given by g — ¢~ ! for any g € G.

Lemma A.2. If p: G — H is a group morphism, then the algebra morphisms ky : kG — kH
satisfies (equality of algebra antimorphisms kG — kH )

ky o opg = opy o k.

Proof. Tt suffices to check the equality for any g € G. We have

ko oopg(g) =ke(g7") = (9) ! = opg(e(9)) = opy o ke(g),

where the middle equality follows from the group morphism status of . O

Definition A.3. For a k-Lie algebra g, define Sy to be the k-algebra antiautomorphism of the
universal enveloping algebra U(g) given by x — —z for any z € g.

Lemma A.4. If ¢ : g — b is a k-Lie algebra morphism, then the k-algebra morphisms U (o) :
Ul(g) — U(b) satisfies (equality of algebra antimorphisms U(g) — U(h))

U(¢) ©Sg =Sy o U(9).



38 BENJAMIN ENRIQUEZ AND KHALEF YADDADEN

Proof. 1t suffices to check the equality for any x € g. We have
U(¢) 0 Sq(x) = U(¢)(—x) = —p(x) = Sy(¢(x)) = Sy o U(®)()-

Definition A.5. Let f: F — F be a k-module morphism. For s,t € Z~(, define
My s(f): Mys(E) — Mys(F)

to be the k-module morphism that transforms matrices over E to matrices over F' by applying
f element-wise.

Let f: E — F be a k-module morphism. For s,t € Z~¢ and M € M, (E) it is immediate that
(A1) s (f) (M) = Moy (f) (M),

where (—) denotes the transposition of matrices. Assuming that the map f is an algebra
antimorphism, one checks that for s,n,t € Zso and M € My, (E), M' € My, s(E) we have

(A.2) N llys(FYMM)) =" (M5 (F) (M) * (Mo (f)(M)),

APPENDIX B. A LEMMA ON COKERNELS

Lemma B.1. Let a: A - C and 5 : B — D be two surjective k-module morphisms such that
there exists a pair of k-module morphisms f: A — B and g : C — D such that the following
diagram

A—2 ¢
(B.1)

-

g

B—" oD

commutes. Then, the morphism 3 induces a k-module isomorphism
coker(f)/ ker(B) ~ coker(g).

Proof. Taking the vertical cokernels of diagram (B.1), it follows that there exists a unique k-
module morphism coker(f) — coker(g) such that the following diagram

B p s D

(B.2) l l

coker(f) ————— coker(g)

commutes, where the vertical maps are the canonical projections. On the other hand, the map
ker(B) — coker(f) obtained by the composition

ker(B3) < B — coker(f)
is such that the composition
ker(8) — coker(f) — coker(g)

is zero. Indeed, thanks to diagram (B.2), this map is equal to the composition

ker(5) — B 5D coker(g),
which is in fact zero. The wanted statement is equivalent to the exactness of the the sequence

ker(f) — coker(f) — coker(g) — {0},
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which we now prove. The surjectivity of coker(f) — coker(g) immediately follows from the
surjectivity of 5 and the commutativity of diagram (B.2). Let us now prove that

im(ker(8) — coker(f)) = ker(coker(f) — coker(g)).

We have

(B.3) im (ker(8) — coker(f)) = ker(@n Bm(f) ~ fgeffi’m -
and

(B.4) ker(coker(f) — coker(g)) = {be BB € im(g)}'

im(f)

The commutative square of inclusions

ker(8) Nim(f) < » im(f)

l [

ker(B) ——————— {bec B | B(b) € im(g)}

gives rise to an injection
ker () {be B|A(b) €im(g)}
ker(/5) Nim(f) im(f)

Let us prove its surjectivity. Let b € B such that 5(b) € im(g). Let then ¢ € C be such that
B(b) = g(c). Since o : A — C is surjective, there exists a € A such that ¢ = a(a). It follows that

B(b) = goala) = B of(a),
where the last equality follows from the commutativity of diagram (B.1). We then have
b—f(a) € ker(p).

The image of the class of b—f(a) under (B.5) is the class of b—f(a) in the target of (B.5), which
is equal to the class of b, thus proving the surjectivity of (B.5). Finally, it follows from (B.3) and
(B.4) that the map im(ker(/) — coker(f)) = ker(coker(f) — coker(g)) is an isomorphism. O

(B.5)

APPENDIX C. SOME RESULTS ON GROUP ALGEBRAS

Proposition C.1. Let

(1} -F5G5 H- {1}
be a split exact sequence of groups with splitting o : H — G. Denote by © : H — Aut(F') the
group morphism given by H > h — O € Aut(F') where

Op izt (U(h)b(f)a(h)_l)
Then
ki®ko

(a) The composition ® : kFQkH ——— kGRkG — KG is an isomorphism of left KF'-modules,
where kG @ kG — kG is the product of the group algebra kG.

(b) Assume that for any h € H, O = idpa (where (=) is the abelianization functor).
Then, for any n > 0, the morphism ® : kF' ® kH — kG induces an isomorphism of left
kF-modules

Y Ipely~IE.
a+b=n
Proof. (a) This follows from the fact that the map F' x H — G given by (z,h) — v(z)o(h) is
a bijection with reciprocal given by g +— (¢! (g o(m(g9))™") ,7(g)).
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(b) Let n > 0. Let us show that ® ( Z It ® Iﬁ,) = I by following these steps:

a+b=n
Step 1 Let us show that

® ( > I%@[%) c I3
a+b=n
Indeed, for any a,b > 0 such that a + b = n, we have
dIE 1Y) C k(I8 ko (1Y) = kue(Ip)*ko(Iy)b € I&IY = 17,

where the last inclusion follows from the fact group algebra morphisms preserve augmen-
tation ideals. Therefore, we obtain the announced inclusion.
Step 2 Let h € H. Let us show that for any a > 0 we have

gr,(k©y) = idI%/I;+l.

By assumption on Oy, for z € F, we have that 732 (0y(z)) = 72P(z), where 73 : F — FaP
is the canonical projection. Therefore, there exists u € (F, F) such that ©(x) = zu, then
(equality in Ir)

kOp(z—1)=(@-1)+(u—-1)+(x—-1)(u—-1)

It is immediate that (z — 1)(u — 1) € IZ and thanks to [Wei, Exercise 6.1.4] we also have
u—1 € I% since u € (F, F). Hence, (equality in gry(kF) = Ir/I%)

(C.1) gry(kOp)([z — 11) = [z — 1)1

Recall that the k-module morphism k@, is a filtered algebra automorphism of kF which
implies that gr(k©p) is a graded algebra automorphism of gr(kF'). Since the algebra
gr(kF) is generated by gr;(kF'), equality C.1 implies that

gr(kOp) = idg(kr)s

thus proving the wanted identity.
Step 3 Let a,b > 0 such that a +b=mn. Let g € G.
(i) Thanks to the proof of (a), there exists a unique (z,h) € F x H such that g =
t(z)o(h).
(ii) Thanks to the proof of Step 1, we define the k-module morphism @, : I%@I% — 17,
to be the restriction of ® to I% ® IY.

(iii) Thanks to Step 2, for u € I, we have that kOy,(u) —u € I&!. Therefore, we may
define the k-module morphism

vi, o Ipely — I ey
u®@v = (z—1)kOp(u) v+ (kOp(u) —u) @v

(iv) Define the k-module morphism

vd, Lo — 148 @ 15
u@v = zkOp(u)® (h—1)v

Let us show that for any t,, € 1% ® I% we have (equality in Ig“)

_ g g
a, a, - a ) a ) ) © a,b\"a,0/"
(9 = D@ap(tap) = Pat1p oV y(tap) + Papt1 0 vy 4 (tap)
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Indeed, by linearity, it suffices to show this equality for u ® v € I} ® I}’{. We have
(I>a+1boy y(U @)+ Pgpyq 00 (u®v)

=ke((z — 1)kOp(u)) ko (v) + kL(kGh(u) —u)ko(v) + ke(z kOp(u)) ko ((h — 1)v)

= k(2 kOp(u)) ko (hv) — ke(u)ko(v) = ki(z) (ke 0 kOp) (u)ko (h)ko (v) — ke(u)ko (v)
— ki(2)ko(h)ke(u)ko(v) — ki(u)ko (v) = (kL(x)ka(h) . 1>kL(u)k0(v)

= (9= 1)Pap(u®v),

where the third equality from the fact that both kit and ko are algebra morphisms, the
fourth one from the definition of ©; and the last one from the definition of ® and from

g =(z)o(h).

Step 4 Let us show by induction on n that
® ( > I%@I%) oI5
a+b=n
First, for n = 0, this follows from the surjectivity of ®, thanks to (a). Next, since

It =% (g - DI,

geG
it suffices to show that for any g € G and any z € 1% we have

(g —1ze<1>< > IF®IH>

a+b=n+1

By induction hypothesis, there exists (t45)a4b=n € @ It ® If{] such that
a+b=n

= @( Z ta,b) = Z (I)a,b(ta,b)-

a+b=n a+b=n
It follows that

(g - 1)Z = Z (g - 1)q)a b( ab) = Z <(I)a+1,b © Vib(ta,b) + (I)a,bJrl o Ug,b(ta,b)>

a+b=n a+b=n
= Z (I)a,b (Vg_Lb(ta—l,b) + Uib_l(ta,b—l)) € Z (I)a,b (I?«" ® I?{) )
a+b=n+1 a+b=n+1

where the second equality follows from Step 3.

Lemma C.2. Let ¢ : G — H be a group morphism and n € Z. We have
(a) gry ker(ky) C ker(gr ko)
(b) if, moreover, ¢ is surjective, then gr, ker(ky) = ker(gr, ky).
Proof. (a) We have
ker(ky) N F"kG
ker(kp) N FHKkG
{a: € F'kG | kyp(z) € FVHKkH }
G"n—‘,—lkG
F"kG F"kH

= ker <9”+1kG — 97"+1kH> = ker(gr, k).

gr, ker(kyp) =

(C.2)
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(b) Let us now assume that ¢ : G — H is surjective. It suffices to prove that the inclusion
in (C.2) is in fact an equality. Indeed, let € F"kG such that kp(z) € F"H'kH. The
surjectivity of ¢ : G — H implies the surjectivity of F"T'ky : F"HkG — F"TkH.
Therefore, there exists y € F" kG such that ko (y) = ko(z). It follows that

x —y € ker(kp) N F"kG,

and the image by the inclusion of the class of x —y in the source of the inclusion is the class
of z in the target of the inclusion, which implies that the inclusion in (C.2) is an equality.
O

Lemma C.3. Let ¢ : G — H and ) : G — K be two group morphisms. We have (isomorphism
of k-modules)

F ker(ke) _ gr,, (ker(ky))
F " ker(ky) + Z F ker(ky) - Fker (ki) B Z gr, (ker(kyp)) - grb(ker(kw)).
a+b=n a+b=n

Proof. Let a,b > 0 such that a + b =n. We have
Fker(ky) - FPker(kip) € FkG - F'kG € FKG,
where the second inclusion follows from the fact that (¥™kG),ez is an algebra filtration. On
the other hand, recall that ker(ky) is an ideal of kG, therefore, ker(ky) - ker(ky) C ker(key).
This implies that
F ker(kp) - FPker(kyp) C F" ker(kyp).
Therefore the product on kG induces a k-module morphism
P Fker(kp) @ Fker(ky)) — F"ker(p).
a+b=n
On the other hand, the fact that grker(ky) is a graded ideal of grkG enables us to define a
k-module morphism

@ gr, ker(ky) ® gr, ker(kiy) — gr,, ker(kyp).
a+b=n
Both maps fit in the following diagram

@ Fker(kp) @ FPker(kyp) ——— @ gr, ker(ky) @ gry ker(ky)
a+b=n a+b=n

| |

F " ker(kyp) » gr,, ker(kyp)

(C.3)

where the horizontal maps are the canonical projection. This diagram is commutative since
for any a,b > 0 such that a +b = n we have for g € F%ker(ky) and h € Fker(ky) that
[9]a - [P]s = [ghln.

Finally, recall that ker(F" ker(ky) — gr, ker(kyp)) = F™ ! ker(ky). The result then follows by
applying Lemma B.1 to the commutative diagram (C.3). O
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