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CROSSED PRODUCT INTERPRETATION OF THE DOUBLE
SHUFFLE LIE ALGEBRA ATTACHED TO A FINITE ABELIAN
GROUP

YADDADEN KHALEF

ABSTRACT. Racinet studied the scheme associated with the double shuffle and regu-
larization relations between multiple polylogarithm values at N roots of unity and
constructed a group scheme attached to the situation; he also showed it to be the
specialization for G = pun of a group scheme DMR§ attached to a finite abelian group
G. Then, Enriquez and Furusho proved that DMR§ can be essentially identified with
the stabilizer of a coproduct element arising in Racinet’s theory with respect to the
action of a group of automorphisms of a free Lie algebra attached to G. We refor-
mulate Racinet’s construction in terms of crossed products. Racinet’s coproduct can
then be identified with a coproduct Aé’l defined on a module Mg over an algebra
Wg, which is equipped with its own coproduct Aév, and the group action on Me
extends to a compatible action of Weg. We then show that the stabilizer of Aé’l,
hence DMRY, is contained in the stabilizer of Aév This yields an explicit group
scheme containing DMRY', which we also express in the Racinet formalism.
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INTRODUCTION

A multiple L-value (MLV in short) is a complex number defined by the following
series

k1 kr
Z RS Z
(0.1) Lky, o) (21,05 20) 1= Z ilir

kr
0<my <---<my my My

where r, k1,..., k. € N*and 21, ..., 2, in uy the group of N roots of unity in C, where
N is an integer > 1. The series (0.1]) converges if and only if (k,,z,) # (1,1). These
values have been defined and studied by Goncharov in [Gon98] and |Gon01] and appear
as a generalisation of the so called multiple zeta values which in turn generalise the
special values of the Riemann zeta function. Among the relations satisfied by the MLVs,
our main interest here are the double shuffle and regularisation ones. Understanding
these relations has been greatly improved thanks to Racinet’s work [Rac].

Essentially, he attached to each pair (G, ¢) of a finite cyclic group G and a group in-
jection ¢ : G — C*, a Q-scheme DMR" which associates to each commutative Q-algebra
k, a set DMR*(k) that can be decomposed as a disjoint union of sets DMRj (k) (A € k).
For any A € k, DMRj (k) is a subset of the algebra of non-commutative power series
k((X)) over formal non-commutative variables xy and (z4)4ec satisfying the following

conditions : (a) group-likeness for the coproduct A : k(X)) — k({X))®2 for which
the elements of X are primitive (b) group-likeness of the image in k{(X))/k{(X))xo
of a suitable correction of the element for the coproduct A, : k{({X))/k((X))zy —

(R((X)) /k((X))20)®? (see [Rac], Definition 2.3.1) (c) conditions on the degree 1 and 2
terms of the element. The double shuffle and regularisation relations on MLVs are then
encoded in the statement that a suitable generating series of these values belongs to the
set DMR 52" (C) where teqn : G = pinv — C* is the canonical embedding. Racinet also
proved that for any pair (G, ¢), the set DMR{ (k) equipped with the product ® given in
(C9) is a group that is independent of the choice of the embedding ¢, so we denote it
DMRY (k). The pair G(k((X))),®) is a group (see Proposition-Definition [L2.2) which
contains DMRY as a subgroup. Thanks to [Rac] Theorem I, the sets DMRY (k) have a
torsor structure over (DMRS (k), ®). This motivates the study of this group.

In order to improve the understanding of the group (DMRg(k),@), Enriquez and
Furusho related this group with the stabilizer Stab(A,)(k) of the coproduct A, in [EF(Q)]
for an action of (G(k((X))), ®) on Mork_mod(k{{X)) /k((X))z0, (k{{X)) /k({X))z0)*?)
arising from an action of the latter group on k{((X))/k{(X))xo (see §1.2.2)).

In addition, Racinet’s work also introduced a subalgebra k((Y)) of k((X)) spanned
by the words ending with x4, for some g € G. It is identified, as a k-module, with

k{((X))/k{{(X))zo and is equipped with a coproduct k((Y)) — k((Y))®2 compatible
with A,. For this reason, the former coproduct has also the same notation in [Rac].
However, we will adopt distinct notation for these two coproducts, by denoting respec-
tively A28 and Amed the coproducts on k((Y)) and k((X))/k{({(X))zo. The situation,

detailed in §I], may be summarised by the diagram

(0.2) k((Y)) ——— k(X)) C' k(X)) ——— k((X))/k{(X))zo
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where the first arrow is an algebra morphism, the second one is the module struc-
ture of the algebra k((X)) on itself, and the last one is a module morphism. The
three last terms of sequence (0.2]) are equipped with compatible actions of the group
(G(k{(X))),®) while the first and last terms are equipped with the compatible coprod-
ucts A8 and AI*“"d. The stabilizer group construction of [EF(] is then based on the
fourth term of (0.2]).

When G = {1}, it was proved in [EF1] (Part 2, §3) that the subalgebra k((Y))
of k((X)) is stable under the action of (G(k((X))),®) on k((X)). One can there-
fore construct the stabilizer group Stab(A¥®)(k) of A8 with respect to the action
of (G(k({X))),®) on Mork_moeq(k{((Y)),k({(Y))*®?). By [EF2] (§3.1), one then has the
inclusion Stab(Amod)(k) C Stab(A#) (k).

However, if G # {1} one can see that the previous group action on k((X)) no
longer restricts to an action on k((Y)). This forbids a direct generalisation of the
result of [EF2]. Such a generalisation is obtained in §2] by introducing an algebra
containing k((X)), namely, the crossed product algebra k({X)) x G (see Definition
211 and developing a formalism on it parallel to Racinet’s. In this framework, there
is a subalgebra Wg of VG isomorphic to the algebra k((Y’)) (see Proposition 2.1.1)
and a quotient module Mg of the left regular Ve-module isomorphic to the module

k{(X))/k{(X))zo (see Proposition2.1.G). The algebra W is equipped with a bialgebra
coproduct AG and the module M is equipped with a compatlble coalgebra coproduct
AM. The group (G(k{(X))),®) acts compatibly on the algebra V¢ and on its regular
left module. In contrast to the situation with k((Y)) C k((X)), the action on the
algebra Ve restricts to the subalgebra Wg, while the action on the left regular Ve-
module induces an action of the quotient module M¢. This can be summarised in the
following diagram

0.3) We s Vo (Vo ———» Mg

This situation allows us to define two stabilizers : one denoted Stab(Aé")(k) that is
identified with Stab(A™°)(k) and another one denoted Stab(AéV)(k). One shows that
the latter group is a generalisation of the group with the same notation defined in
[EEF2] for G = {1}. One also shows the inclusion (see Theorem 2.4.71] generalising
[EE2|, Theorem 3.1)

Stab(AM) (k) C Stab(A¥)(k).

In §3] we express the group Stab(AéV)(k) in Racinet’s formalism by working out the
suitable isomorphisms (see Proposition B.2.3]).

In §4 we show that the group functors k + Stab(A}!)(k) and k + Stab(AY)(k)
are affine Q-group subschemes of k — (G(k((X))),®) and study their Lie algebras.
We show that these are stabilizer Lie algebras corresponding to the Lie algebra actions
which are the infinitesimal versions of the Q-group scheme morphisms obtained from
the previous actions of the group (G(k{(X))),®).

Acknowledgements. The author is grateful to Benjamin Enriquez for the helpful
discussions, ideas and careful reading.
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Notation. Throughout this paper, G is a finite abelian group whose product will be
denoted multiplicatively. For a commutative Q-algebra k, a k-algebra A, an element
x € A and an A-module M we consider:

e l, : M — M (resp. ry : M — M) to be the k-module endomorphism defined
by m — xm (resp. m — mz) and if x is invertible, then ¢, (resp. r,) is an
automorphism.

e ad, : A — A to be the k-module endomorphism given by ad,(a) = [z,a] = za — az.

e Ad, : A — A to be the k-algebra automorphism defined by a — zaz~! with x € A*.

1. RACINET’S FORMALISM OF THE DOUBLE SHUFFLE THEORY

In this part, we recall from [Rac] the basic formalism of the double shuffle theory,
the main ingredients being presented in §L.1l In §T.2] and §1.3] we introduce the double
shuffle group and the double shuffle Lie algebra respectively; and we recall from [EF0]
the stabilizer interpretation of both objects.

1.1. Basic objects of Racinet’s formalism. Let k be a commutative Q-algebra.
Let k((X)) be the free noncommutative associative series algebra with unit over the
alphabet X = {zo} U {z4]lg € G}. It is complete graded with deg(zo) = deg(z,) = 1
for g € G. This algebra is endowed with a Hopf algebra structure for the coproduct
A k(X)) = k((X))®? which is the unique morphism of topological k-algebras given
by A(Cﬂg) =2,01+1®x,, for any g € G LU {0} ([Rac], §2.2.3). Let then G(k((X)))
be the set of grouplike elements of k((X)) for the coproduct A. It is a group for the
product of k((X)).

The group G acts on the set X, the permutation ¢, corresponding to g € G being
given by ty(xo) = o, tg(xn) = x4, for h € G. This action extends to an action by
k-algebra automorphisms on k((X)) ([Rac], §3.1.1) which will also be denoted g — t,.
One can verify by checking on generators the identity:

(1.1) Vge G, Aoty =570 A,

since both sides are given as a composition of k-algebra morphisms. As a consequence
of (1), for any g € G, the k-algebra automorphism ¢, : k((X)) — k((X)) restricts to
a group automorphism ¢, : G(k((X))) = G(k{(X))).
Throughout the document, let us denote k((X)) — kiwords in zo.(zg)gec} 4 1y ((v|w)),,
the map such that v = )" (v|w)w.
Nr4+1

Each word in X can be uniquely written (a:glﬂ:glxamxm ez X, X )r,m,...,nrHEN-

91,..,9r€G
This family forms a topological k-module basis of k((X)). Let q be the k-module

automorphism of k((X)) given by ([Rac|, §2.2.7)

ny—1 no—1 ne—1 Nry1—1 _
(1.2)  alzg'™ 2g 25" g2 g% )=
ni—1 no—1 nyp—1

Ty Tg1 T $g2gl—1 ) xgrg:lmo

For (n,g) € N* x G, set yn 4 = 2 'z Let Y := {yn4l(n,g) € N* x G}. We define
k{({Y)) to be the topological free k-algebra over Y, where for every (n,g) € N* x G,

the element y,, 4 is of degree n. One can show that k((Y)) is equal to the k-subalgebra
k& D, e k((X))zy of k(X)) ([Rac], §2.2.5 and [EF0], §2.2).
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One denotes by qy the k-module automorphism of k((Y)) given by ([Rac], §2.2.7.)

(1.3) ay (Yni,g1 *** Ynrg,) = Yr1,01Yns,9097" " Ynigrg

Let AY8 . k((YV)) — (k(<Y>>)®2 be the unique topological k-algebra morphism such
that for any (n,g) € N* x G

n—1
(1.4 A(Y0) =Yg © L+ 18 Yg+ 3 U © Yy

E
The map A% is called the harmonic coproduct ([Rac], §2.3.1) and endows k((Y)) with
a bialgebra structure. Moreover, one can easily check that the action ¢ on k((X))
restricts to an action on k((Y’)) by k-algebra automorphisms.

The topological k-module quotient k((X))/k((X))xo is a left k((Y))-module free of
rank 1. The topological k-module morphism 7y : k((X)) — k{(X))/k{(X))x¢ is a
surjective map and its restriction to k((Y’)) is a bijective map. It follows that there is
a topological k-module morphism A4 : k(X)) /k((X))zo — (k(X))/k{(X))ze)®?
uniquely defined by the condition that the diagram

Adls

K(Y) (kiry)”

(1.5) ”YJ [ |

k(X)) k(X)) 20— (k((X)) /K((X))0)™?

Amod
*

commutes. This equips k((X))/k((X))zo with a cocommutative coassociative coalge-
bra structure.

The k-module automorphism q of k{({X)) preserves the submodule k{(X))z( and,
therefore, induces a k-module automorphism of k{(X))/k((X))zo denoted q, which
is intertwined with the k-module automorphism qy of k((Y')) via the identification

k((Y)) = k((X))/k{{(X))o.
1.2. The double shuffle group DMR (k).

1.2.1. The group (G(k((X))),®). Let k be a commutative Q-algebra. Recall that the
set of grouplike elements of k((X)) for the coproduct A is

G(k((X))) = {¥ € k{(X))* | A(¥) = ¥ @ ¥}.

For ¥ € G(k{({X))), let auty be the topological k-algebra automorphism of k({(X))
given by ([EF0], §4.1.3 based on [Rac], §3.1.2)

(1.6) o > Xo and for g € G,xy — Ady (g-1)(g).

Define Sy to be the topological k-module automorphism of k((X)) given by ([EE0],
(5.15) based on [Rac|, (3.1.2.1))

(1.7) Sy = fy o auty.
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Lemma 1.2.1. For ¥ €

G(k((X))), the k-algebra automorphism auty is a bialgebra
automorphism of ( A)

Proof. Both auty and A are k-algebra automorphisms. So, using Identity (L), one
can check on generators that

(1.8) A o auty = (auty)®? o A,

which is the wanted result. O

Proposition-Definition 1.2.2 ([Rac], Proposition 3.1.6). The pair (G(k((X))),®) is
a group, where for ¥, ® € G(k{(X))),

(1.9) U®P:=Sy(P).
A proof of this claim is already available in Racinet’s paper, however, considering

the way it has been stated (using categorical considerations), it might be hard to read.
Thus, we find it useful to rewrite it here. In order to do so, we will need this result:

Lemma 1.2.3. For U, ® € G(k((X))), we have
(1.10) autyee = auty o aute

(1.11) Sves = Sy o Se

This, in turn, uses the following technical Lemma which can be easily obtained by
checking this identity on generators

Lemma 1.2.4. For ¥ € G(k((X))) and g € G, we have auty oty = t4 0 auty.

Proof of Lemma[LZ.3. Tt is enough to prove the identity (LI0) on generators. Since
for U € G(k((X))) we have auty(xg) = o, Identity (LI0) is immediately true for xg.
Then, for g € G, we have

auty o aute(zy) = auty o Ady (-1)(2g) = Adauty (1, (@-1)) © autw(zg)
= Adauty (1,(@-1)) © Ady, (w-1)(Tg) = Ady, (autg (@-1))1,(w—1)(Tg)
= Adtg(autq,( —1)\1,—1)(.%'9) = Adtg((\p@q))—l)(.%'g) = autq@@(mg)

where the fourth equality is obtained by applying Lemma [[L2.4l This concludes the
proof of Identity (I.I0). Finally, by using the latter, we get

Sy 0 Sp =Ly oauty oy o aute = Ly 0 Lyy4y(a) © auty o aute
:glllautq,(q)) o auty o auty = byee © autyes = Sved,

thus, establishing Identity (LI1IJ). O

Proof of Proposition-Definition [[.2.2. From Lemma [[2.1] we deduce that ® has its
image in G(k((X))). Next, thanks to Identity [L1I] in Lemma [[L2Z3] the product ® is
associative. Indeed, for ¥, ® and A € G(k((X))), we have

(Y@ @) ®A = Syea(A) =Sy (Se(A) =Su(P®A)=V® (P®A).
Finally, the other group axioms being easy to check, this proves Proposition O
Corollary 1.2.5.
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(a) There is a group action of (G(k((X))),®) on k((X)) by k-algebra automorphisms
(1.12) (GOR((X))), ®) — Autic_aig(k{(X))), ¥ — auty
(b) There is a group action of (G(k{((X))),®) on k{((X)) by k-module automorphisms
(1.13) (G(k{(X))), ©) — Autie_moa (k{(X))), ¥ — Sy
Proof. This result is exactly Lemma [[.2.3] 0

Next, we aim to give a group action of (G(k((X))),®) on the topological k-module
k{(X))/k{(X))xo which is compatible with its action S on k((X)). It is important to
notice that this action is not given by compatibility using 7wy but by the following:

Proposition-Definition 1.2.6 ([EF0], §5.4). For ¥ € G(k{((X))), there is a unique
k-module automorphism Sy of k({X))/k{{X))xo such that the following diagram

Sy

k((X)) k{(X))
(1.14) awyl F‘O”Y
k{(X))/k{{(X))zo ry k((X))/k{(X))zo

commutes.

Corollary 1.2.7. There is a group action of (G(k{({(X))),®) on k({X))/k{{(X))xo by

topological k-module automorphisms
(115)  (G((X)), ®) —> Autic_moa (K((X))/k((X))z0), ¥ —> S
Proof. We have

Sy oSy oqomy =Sy ogomy oSe =qomy oSyoSe=qomy o Suge,
and, by uniqueness of the k-module automorphism 5\3{@@, we obtain

Y Y _ QY
S\I/ OS(I) == ST@‘I)‘

Let I' : k((X)) — k[[z]]*, ¥ > I'y the function given by ([Rac], (3.2.1.2))

(=)! ~1
(1.16) Dy(x) := exp ZT(‘I’W& z1)z"
n>2

It satisfies the following property:
Lemma 1.2.8. For U, ® € G(k((X))), we have I'ygp = I'yl's.

Proof. Lemma 4.12 in [EF0] says that the map (—|z§ 'z1) : (G(k{((X))),®) — (k,+)
is a group morphism, for any n € N*. The result is then obtained by straightforward
computations. ]

We then define the following topological k-module automorphism of k{((X)) /k((X))xo:

gy .__ Y
(117) S\Ij — 61—131(1‘1) @] S\Ij



8 YADDADEN KHALEF

Corollary 1.2.9. There is a group action of (G(k({({X))),®) on k{({(X))/k{({X))zo by
topological k-module automorphisms

(1.18) (GOK((X))), ®) — Attc_moa (K((X))/K((X))z0), ¥ —s TS}

Proof. Follows from Corollary [L2.7] and Lemma [[L.2.8] O
The above automorphism is related to an automorphism introduced in [EF0].

Proposition 1.2.10. For any V¥ € G(k{(X))), the k-module automorphism 'Sy, is
equal to the k-module automorphism Sg(qj) where © 1 (GK((X))), ®) = (kX)) *, @)

is the group morphism given by (J[EFQ], Proposition 4.13)
(1.19) O(W) i= Iy (1) exp(— (¥ o)),
Proof. Let ¥ € G(k((X))) and v € k({X)). First, we have
Se(w)(v) = O(W)autey)(v) = (Ty' (21)W exp(—(P]zo)z0)) aute w)(v)
Moreover, one can check on generators that
aute(p) = Adexp((W]zg)ao) © ALY
Therefore, one obtains
Se(w)(v) = Ty (z1)Wauty (v) exp(—(P]zo)zo) = Ty (21)Sw (v) exp(—(¥|zo)ao)
Consequently,

FSy (@0 my(v) T3 (@)SY (Tomy (v)) = T (@) (To my (Su(v) )
=qomy (I'y! (z1)Se(v)) =qo 7y (Sew)(v))

This establishes the identity FS}{ = Sg , thanks to Proposition-Definition [L.2.61 [

()
1.2.2. The group (DMRS (k),®). Let k be a commutative Q-algebra. For ¥ € G(k((X))),
set U, :=qomy (I'g'(21)¥) € k(X)) /k((X))o.

Proposition-Definition 1.2.11 ([Rac], Definition 3.2.1 and Theorem I). If G is a
cyclic group, we defind3 DI\/IRg(k)E to be the set of ¥ € G(k((X))) such that :

i (Ulzo) = (W|z1) = 0; ii. If |G| € {1,2}, (¥|zozy) = 0;
. APYD,) = U, @ U, ; w. If |G| > 3,Vg € G, (¥|zg—z,-1) =0.

The pair (DMR§ (k), ®) is a subgroup of (G(k((X))),®).

IThe product ® extends to a product on k{({(X))*. See [EF0], Lemma 4.1 and [Rad], §3.1.2.

2The notation DMR is for ”Double Mélange et Régularisation” which is French for ”Double Shuffle
and Regularisation”.

3In [Rac], Definition 3.2.1 gives sets DMR} (k) where A € k and ¢ : G — C* a group embedding
(therefore G is cyclic). If |G| € {1, 2}, the embedding ¢ is unique; and if |G| > 3, for A = 0, condition
(iv) does not depend of the choice of ¢. For this reason, the embedding ¢ does not appear in our
notation.
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Thanks to Corollary [.2.9] there is a group action of (G(k{(X))),®) on the k-module
Mot (((X)) (X))o, (e( (X)) /k((X))0) ) vin :

(1.20) U.D = <(FS}£)®2> oDo('sY)1

In particular, the stabilizer of D = A™°d ig the subgroup ([EFQ], §5.4)

(121)  Stab(Amed)(k) := {\11 € Gk((X)))| (T8Y) %% 0 Amed = Amod o FS\I,}
Proposition 1.2.12 ([EF0], Theorem 1.2). If G is a cylic group, we have
(1.22) DMRY (k) = {¥ € Stab(A*%)(k) | (¥|zg) = (¥|21) = 0}.

Since the condition (¥|zg) = (¥|z1) = 0 defines a subgroup of (G(k((X))),®), Theorem
212 then identifies DMRY (k) with the intersection of two subgroups of (G(k((X))), ®).

1.2.3. An affine Q-group scheme structure. Recall that an affine Q-group scheme is a
functor G from the category of commutative QQ-algebras to the category of groups for
which is representable by a Hopf Q-algebra (see, for example, [Wat], §1.2).

Proposition 1.2.13. The following assignments are affine Q-group schemes:

(a) k = (G(k({X))),®);

(b) DMRS : k — (DMRS (k), ®);

(c) Stab(Am°d) : k s Stab(AM°9)(k).

Proof. (a) See |[EF0], Lemma 4.6; (b) See [Rac|, Theorem I; (c¢) See [EF(], Lemma
5.1. U

Therefore, Proposition provides an inclusion of affine Q-group schemes
(1.23) DMRS' C Stab(Amed) ¢ (k > (g(k<<X>>),®)>

1.3. The double shuffle Lie algebra amt§. Recall from Theorem 12.2 in [Waf] that
there exists a functor Lie from the category of affine Q-group schemes to the category

of Q-Lie algebras such that Lie(G) = ker <G (Qlel/(e%)) — G(Q)) In this section, we

provide an explicit formulation of the Lie algebras obtained by applying the functor
Lie to the inclusions (23]

1.3.1. The Lie algebra (El\b( ), (-, >> Let El\b( X) be the free complete graded Q-

Lie algebra over the alphabet X. One can identify the Q-algebra Q((X)) with the
enveloping algebra of £1b( ) ([Rac], §2.2.3). Therefore, £1b( ) is identified with the
Lie subalgebra of primitive elements in Q((X)) for the coproduct A. Namely,

(1.24) ib(X) = {v € QXD |AW) = v @ 1+ 109},
For ¢ € @(X), let dy, be the derivation of Q((X)) given by (|[Rac|, §3.1.12.2)
(1.25) dy(x0) =0, and for g € G, dy(xg) = [x4,t4(1)],
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and let s, be the Q-linear endomorphism of Q((X)) given by ([Rac], §3.1.12.1)

(1.26) Sy 1= Ly + dy.
We then define a Lie algebra bracket on El\b(X) as follows (|Rac], §3.1.10.2):
(1.27) Vi1, € Sib(X), (1, 0h2) 1= sy, () — 5y (¥1).
1.3.2. The Lie algebra (dmr§, (-,-)). Let us define vy : Q((X)) — Q[[z]]; ¥ > 7y, where
D)™t
(1.2 @) = Y T (gt o,
neN*

and for ¢ € Q((X)), set ¢, 1= q oy (—yy(z1) + ) € Q((X))/Q((X))xo.
Proposition-Definition 1.3.1 ([Rac], Definitions 3.3.1, 3.3.8 and Proposition 4.A.i)).
The set omt§ of elements ¢ € £ib(X) such that

i. (Ylzo) = (Yla1) = 0; i, Amod(y,) = b, @ 1+ 1@ 1hy;

iti. (Yulzf'zg) = (-1} (1/)*|a:8*1xg_1) for (n,g) €e N* x G;
is a complete graded Lie subalgebra of <§1\b(X), (-, >)
Remark. According to [Rac|, Propositions 3.3.3 and 3.3.7, it is enough to have (iii)

in these cases:

forn=1and any g€ G if |G| >3

since this identity is always true for all the other cases.

{for (n,g) = (2,1) if |G| = 2

1.3.3. Relation of Dmtg with a stabilizer Lie algebra.

Proposition 1.3.2 ([Rac], (3.1.9.2)). There exists a Lie algebra action of (@(X), (,))
by Q-linear endomorphisms on Q((X)) given by

(1.29) (£ib(X), () — Endg(Q((X))), ¥ — sy.

Proposition-Definition 1.3.3 (|[Rac], §4.1.1 and [EF0], Lemma 2.2). For € Ei\b(X),
there exists a unique Q-linear endomorphisnf) 832 of QU(X))/QU(X))xzo such that the
following diagram

QU(X)) - Q((X))

qom Yl lﬁoﬂ Y

Q((X))/Q{{(X))xo 7 Q((X))/Q{(X))zo
commutes. Moreover, there is a Lie algebra action of (El\b(X), (-,)) by Q-linear endor-
morphisms on QU(X))/Q((X))zo given by
(1.30) (SiB(x), (-,+)) — Endg (QUX))/QUXNz0), @ — s}

4Racinet defined this Q-linear endomorphism on Q((Y’)). Even if we proceeded differently, we chose
to keep the notation for consistency.
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For ¢ € E%(X), we consider the following Q-linear endomorphism on Q((X))/Q((X))zo
(1.31) sy =y () F S0
Lemma 1.3.4. For any ¢ € Ei\b(X), the Q-linear endomorphism 7311; 1s equal to sé/(w)

where 6 : (Et\b(X), () = (QUX)), (-,-)) is the Lie algebra morphisnfl given by (JEEQ],
Proposition 2.5)

(1.32) 0(v) = —yyp(@1) + ¢ — (¥[zo)zo
Proof. Let ¢ € @(X) and a € Q((X)). First, we have

so(y)(a) = 0(v)a + dg(y) (a) = (= (1) + ¥ — (¥[z0)T0)a + do(y)(a)
Moreover, one can check on generators that

do(y) = ad(plz)eo + dy;
Therefore, one obtains
sopy (@) =(—=ry(z1) + ¥ — (Y|wo)w0)a + ad(y|zg)a (@) + dy(a)
==Y (@1)a + sy(a) — (Y]xo)azo.
Consequently,
Ts(@o my (@) = — (@) (@omy (@) + ) (o mv ()

—qgo 7TY( - ’Yw(xl)a) +qoTmy (Sw(a)>

=qo 7Ty( — yp(r1)a + sw(a)) =qgomy (se(w) (a)).
This establishes the identity 755 = s;/( »)» thanks to Proposition-Definition 33 O

Proposition 1.3.5. There is a Lie algebra action of (El\b(X), (-,-)) by Q-linear endo-
monphisms on QU(X))/Q{(X))zo by

(133)  (Sib(X), () — Endg (QUX)/QUX))z0), ¥ — Tsy.
Proof. Thanks to [EF0], §2.5, the map ¢ — sy(y;) is a Lie algebra action of (Et\b(X), (,))
on Q((X))/Q((X))xg. The result then follows from Lemma [[L3.4] O

The space Morg (Q((X>>/Q<(X>>mo, (@(<X>>/Q(<X>>xo)®2) is then equipped with
an action of the Lie algebra (£ib(X), (-,-)) given by ([EF0], §2.5)
(1.34) ¢-D:=(Tsy ®id+id® Vs)) oD — Do sy,
where v € £ib(X) and D € Morg (Q((X))/Q((X))zo, (QUX))/Q((X))z0)*?).
__The stabilizer Lie algebra stab(Amod) of D = A™°d i then the Lie subalgebra of
(Lib(X), (-,-)) given by ([EF0], §2.5)
(1.35)  stab(Amd) := {4 € Lib(X) | (Ts) ®id +id ® Ts)) o Amed = Amod o 7571
It is related to the Lie algebra Dmtg as follows:

®One can equip Q((X)) with the bracket (,-) as described in (L27).
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Proposition 1.3.6. dmt§ C stab(A™°) (as Lie subalgebras of (ﬁ(X), (-,))).

Proof. Thanks to Lemma [[34] the stabilizer Lie algebra stab(A™°4) is identified with
the stabilizer Lie algebra given in [EF(0]. Therefore the wanted inclusion is stated in
Corollary 3.11 of [EF0] (dmt§ being denoted dmr in [EF0]). O

1.3.4. Ezponential maps. Recall the affine Q-group schemes from Proposition [L2.13]
We have :

Proposition 1.3.7. (a) Lie(k - (g(k((X>>),®)) = <§i\b(X), <.,.>),-
(b) Lie(DMRS, ®) = (Dmtg, (-, >), where G is a cyclic group;
(¢) Lie(Stab(Amod), @) = (5tab(A;nod), () .>).

Proof. (a) See [EF0], §4.1.4; (b) See [Rac], §3.3.8; (c) See [EE0], (5.12). O

Let k be a commutative Q-algebra. Let us denote Ei\bk(X) = E%(X)@k. Let
cbhy. y : EiEk(X) X %k(X) — %k(X) be the map defined by cbh. \(¢,¢) =
mor,, 4(cbh), where cbh in Ei\bQ(a, b) is the Campbell-Baker-Hausdorff series ([EF0],
§4.1.2) cbh = log(exp(a)exp(b)) with log : 1 + Q((a,b)) — Q((a,b))o and mory 4 is
the Lie algebra morphism Ei\bQ(a, b) — (Ei\bk(X), (-,)),a — ¥,b+— ¢. We then define
expy - Ei\bk(X) — G(k({X))) to be the exponential map; it intertwines cbh,. y and
®. The following proposition recalls from [Rac], §3.1.8 and [DeGol, Remark 5.14, the
explicit form of explg‘9 as well as gives a proof of this statement.

Proposition 1.3.8. For a commutative Q-algebra k and i € %k(X), we have

(a) The exponential map expX :Ei\bk(X) — G(k((X))) is a bijection;

(b) Sexpls (1) = exp(sy); whf Y — sy is the map Liby(X) — Endk_meda(k{(X)))
obtained from the map £ib(X) — Endg(Q((X))) in (1.28) by tensoring with k

and exp is the usual exponential of an endomorphism;
(¢) expl(¥) = exp(sy)(1).

Proof. (a) See [EF0] §4.1.4 and §4.1.5;

(b) The assignment k — Auty_p0q(k((X))) is an affine Q-group scheme and the
map G(k((X))) = Autk_moa(k{((X))), ¥ — Sy defines an affine Q-groupe scheme
morphism from k — G(k((X))) to k — Autkx_mod(k({(X))). The associated Q-Lie

—

algebra morphism is £ib(X) — Endg(Q((X))),% — sy. As a consequence, for
any ¢ € Liby(X), Sexplé(w) = exp(sy).
(c) Follows by applying the latter equality to 1, using the identity Sy (1) = ¥ for any

¥ e Gk((X)))- -

To conclude this part, let us notice that the bijection of the map expy : Ei\bk(X ) —
G(k((X))) implies that we have an identification between the group actions defined in
§1.2] with the exponential of the Lie algebra actions of the current section.
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2. A CROSSED PRODUCT FORMULATION OF THE DOUBLE SHUFFLE THEORY

We construct a crossed product version of the double shuffle formalism. The relevant
algebras and modules are introduced in §.1]: (a) an algebra Ve defined by generators
and relations, which is then identified with a crossed product algebra involving Racinet’s
formal series algebra k({X)); (b) a bialgebra (Wg, A¥) isomorphic to the bialgebra
(k((Y)), A¥8) where W is a subalgebra of Vg; (c) a coalgebra (Mg, A}!) isomor-
phic to the coalgebra (k((X))/k({X))zo, Am°d) where Mg has a Vg-module structure
inducing a free rank one We-module structure on it, compatible with the coproducts
AY and A} In §2.2 and §2.3] we construct actions of the group (G(k{(X))),®) on
these objects by algebra and module automorphisms. This leads us in §2.4] to define

the stabilizer groups of the coproducts A’C/}) and Aé" and show in Theorem 2.4.7] that
the stabilizer of the latter is included in the stabilizer of the former.

2.1. The algebra Vg, the bialgebra (Wg,Aé\}) and the coalgebra (Mg,Aé/‘)

2.1.1. The algebras VG and WG and the module Mg. Let f}}‘; (or simply f)G if there is
ambiguity) the complete graded topological k-algebra generated byﬁ {eo, €1} UG where
eg and e; are of degree 1 and elements g € G are of degree 0 satisfying the relations:

(i) g x h = gh; (i) 1=1¢; (iii) g x eg = €p X ¢;

for any g, h € G; where “x” is the algebra multiplication which we will no longer denote
if there is no ambiguity. R

Set Wg := k®Vge; (or simply W if there is ambiguity). It is a graded topological
k-subalgebra of V. Next, the quotient ./\;(15 = Vg/ <1>Geo + deG\{l} Vg(g — 1)) (or

simply M if there is ambiguity) is a topological k-module. It is also a topological Vo-
module and, by restriction, a topological We-module. Let 1 M be the class of 1 € Ve
in M¢. The map — - 1 : Vo = Mg is a surjective topological k-module morphism
whose kernel is Vgeq + D ogeG\{1} Valg —1).

2.1.2. The algebra Ve as a crossed product. First, let us introduce the basic material
about the crossed product of an algebra by a group acting by algebra automorphisms.

Definition 2.1.1. Let A be a k-algebra such that the group G acts on A by k-algebra
automorphisms. Let us denote G X A 3 (g,a) — a9 € A this action. The crossed
product algebra of the k-algebra A by the group GG denoted A x G is the k-algebra
(A ® kG, %) where * is the product given by

(2.1) dlagg)x Y (heh)=> [ > abf| ok

geG hedG keG \ g,heG|gh=k

for ag,by € A with g € G ([Bou], Chapter 3, Page 180, Exercise 11).

6The notation eo and e; is inspired by [EFT] which in turn is inspired by [DT].
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Proposition 2.1.2 (Universal property of the crossed product algebra). For any k-
algebra B, there is a natural bijection between the set Mork,alg(A x G, B) and the set
of pairs (f,7) € Mork_aig(A, B) x Morg,(G, BX) such that f(a9) = 7(g)f(a)r(g)"".
Proof. Indeed, given a k-algebra morphism 8 : A x G — B we consider:

e The k-algebra morphism f : A — B given for any a € A by f(a) = f(a ® 1);
e The group morphism 7 : G — B* given for any g € G by 7(g9) = S(1 ® g).

These morphisms verify:
T(9)f(a)r(97) =B(1@ g)Bla®@)Bleg ) =f(1e g * (a2 1)+ (1og "))
=6((a? @ g) (1@ g™")) = B(a’ © 1) = f(a?).

This shows that the map 8 — (f,7) is well defined. Now let us define a converse map
in order to get a bijection. Given any pair (f,7) of morphisms satisfying the conditions
of the proposition, we set § : a ® g — f(a)7(g) for any a ® g € A x G. This is a
k-algebra morphism. Indeed, for any a® g and b h € A x G

Bla®@g)* (b@h)) =p(ab? © gh) = f(ab®)T(gh) = f(a)f(b%)7(g)7(h)
=f(a)7(9)f(0)7(9) " 7(9)7(h) = f(a)7(g)f (b)T(h)

=f(a®g)B(b®h).
Thus the map (f,7) — [ is also well defined. Finally, one can easily check that the
composition of the two maps on both sides gives the identity. O

Now, recall that g — t, defines an action of G on k((X)) by k-algebra automorphisms
(IRac], §3.1.1). We can then consider the crossed product algebra k((X)) x G for this
action.

Proposition 2.1.3.
(a) There is a unique k-algebra morphism Vg <> k((X)) x G such that ey — xo ® 1,
e1— —11®1land g—1®g.
(b) There is a unique k-algebra morphism k({(X)) x G LA Vo such that zo @ 1 — eg
and for g € G, 14 ® 1 +— —ge1g tand 1 ® g — g.
(¢) The morphisms « and [ given respectively m and are isomorphisms which
are inverse of one another.

Proof.

(a) We verify that the images by the morphism « of the generators of Ve satisfy the
relations of Vg.
° Oz(lg) =1®1lg = a(l);

e For g,h € G, a(g) xa(h) = (1®g) * (1 ®h) =1t,(1) ® gh =1 ® gh = a(gh).
e For g € G,a(g)*xa(eg) = (1@g)*x(xo®@1) = 1t4(x0) ® g = 9 ® g. On the other
hand, we have a(eg) * a(g) = (o ®@ 1) x (1 ®¢g) = x0t1(1) ® g = g ® g. Thus

a(g) * aleg) = a(eo) * alg).
(b) First, since for any g € G, the element —ge1g~" is of degree 1, there is a unique
k-algebra morphism f : k((X)) — V¢ such that xo — eg, z, — —ge1g~*. Second,
there is a unique group morphism 7 : G — ]A/(X; given by g — ¢g. Next, for any g € G,

1
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the maps k((X)) — Vg defined by a f(ty(a)) and a — 7(g)f(a)T(g9)"" are k-
algebra morphisms that are equal by restriction on generators x; (h € {0} UG) of
k{(X)). Indeed,

7(9)f(20)7(9) " = geog ™' = eogg™! = eo = f(z0) = f(tg(z0))
and for h € G,

7(9)f (xn)7(9) ™" = g(=herh™")g™" = ghei(gh)™ = f(xgn) = f(ts(wn)).
We then have for any g € G and any a € k((X)), f(ty(a)) = 7(9)f(a)r(9)" .

Finally, according to the universal property of crossed products the pair (f, 1)
gives a unique k-algebra morphism 8 : k((X)) x G = Vg,a ® g — f(a)7(g)
which verifies B(zo ® 1) = f(z0)7(1) = eo, B(xg ® 1) = f(xg)T(1) = —gerg~* and

BA®g) = f(1)r(g) =g, for g € G.

(c) Tt is enough to show that the compositions of o and [ gives the identity. First,
since o« : VG — fig, it is enough to compute it on generators. We have
e~ 0@l eg, e~ —x21®1—eandg—1R0g—g. Thusﬁooz:idf/c.
For the converse, we show that a0 8 € Morg_ae (k((X)) ¥ G, k((X)) ¥ G) and
the identity of k((X)) x G have the same image via the bijection of the universal
property of crossed products. The image of the identity is the pair

fiara—a®land rg(g) =1®g

Next, let us compute the image of o o 3. The k-algebra morphism f is given for
any a € k((X)) by

fla)=aopla®1)
Since it is a k-algebra morphism, it is enough to determine it on z4, g € {0} U G.
We have

flxo) =aofB(zo®1) =aley) =zp®1
and for g € G,
flzg) =aop(zy®1) = a(—geig™') = —a(g) x aler) x alg™")
=—(leg*(uel)x(1eg ) =(E)eg*(1og ") =201
We then deduce that for any a € k((X)), f(a) = a® 1. Next, the group morphism
7:G — (k{((X)) x G)* is given for any g € G by
7(9) =acf(l®g) =alg) =1®g.

Finally, by uniqueness of the images we conclude that a o 8 = idy((x))xa

2.1.3. The bialgebra (Wg, AW) and the coalgebra (Mg, AM).

Proposition 2.1.4. The family (681719161---egT_lgrewgrﬂ_lgerl>reN,n17,,,,nr+leN*
R 91,--,9r+1€G

s a basis of the k-module Vg .
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Proof. Since the family ((—1)7@817%91 e xgr_lxgl"'grxgr+l_l)T‘EN,nl,...,nr+1€N* is a ba-
glv"'ngeG
sis of the k-module k((X)), it follows that the family
-1 r—1 Npt1—1
((—1)%6“ gy @y Tgreg, g @ g1 9r9r+1)r7n17...,nr+leN
91,--,9r+1€G

is a basis of the k-module k((X)) ® kG. Thus, its image by the bijection 5 (given in
Proposition [QI{I@ is a basis of Vg. Moreover, for r € N;ny,...,n,41 € N* and
91, ---,9r+1 € G, we have

ni—1 np—1 npp1—1 .
) Lgy - xOr Lgi-grLo D91 GrGr+1 =

(g @ 1)k (g, @ 1) 5k (a7 @ 1) % (2,0, ® 1)
(g @ x(L@g) - x (1@ g,) * (10 gri)

Then
(22)  BU=1)"zp tag, 2l gg 1y T @ g1 grgrs)
= (=1 Blag" T @ DB(ag @ 1)+ Blag ™ @ 1)B(wgyg, ® 1)
Blag ™ @)1 @gr) - B(1® gr)B(1 D grin)
=g lgrergr ey g grergr g ey ™ g grgr
=g lgrer ey gt g g grerey™ g g1 grgr
- 66“_19161 ... eSTflgreleg*“’lng
This gives us the wanted result. O

Proposition 2.1.5.

(a) The family {1}U <66“_1glel e egrflgre1egwlflgr+1e1>TGN’nh...,nhnHleN*, is a ba-
~ g1,--9r,9r+1€G
sis of the k-module We.
(b) The k-subalgebra We is freely generated by the family

Z = {2y = —ef 'ge1|(n,g) € N* x G}.

Proof.

(a) First, We is the image of the k-module morphism k @ Vg — Vg, (A, v) = A +ve;.
Second, according to Proposition 2.1.4] the family

—1 r—l i -1
(17 0)7 <07 681 gier - eg greleg o g7"+1)rGN,nl,...,nT,nprleN*,
917~~~7gr79r+1€G
is a basis of the k-module k & V. Moreover, the image of this basis by this
k-module morphism is the family

ny—1 ny—1 nr+1_1
{1} U <60 gier- - €y’ "greie gT"Hel>r€N,n1,...,nr,nr+1eN*,
gl,---79r79r+1€G

which is free since it is contained in a basis of the target. This implies that this
family is a basis of the image of the previous morphism which is Wg.
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(b) Let k((Z)) be the free algebra over the letters z, 4, (n € N*,g € G), which we
view as free variables. Then there is a unique k-algebra morphism k{((Z)) — Wa
given by z, 4 — —6871 ge1. Let us show that it is an isomorphism:

The free k-module k((Z)) has basis {1}U(2n; g, *** Zn,y1,9,01)r€Nm1,...oney e and,
g1y gr+1€G

A . ni—1 n'r+1_1
as a k-module, W¢ has basis {1} U <€01 gier--- € gr‘f'lel>r6N,n1,...,nr+16N*,
91,097 +1€G
according to @ One computes the image by z, 4 — —eg_l gep of the latter basis

and finds it to be equal to the former basis. Therefore, 2, 4 — —eg_l ge1 induces
a bijection between the two basis and then a bijection between k((Z)) and Wg.
Hence, 2, 4 — —ep 'ge; is a k-algebra isomorphism between k((Z)) and Wg.

U

So, from now on, by abuse of notation, we will identify elements of We with elements
of k({Z)) by the k-algebra isomorphism z, , — —ef ge;.

Proposition 2.1.6. There exists a k-module isomorphism k({X))/k{({X))xzqg & Mg
uniquely determined by the condition that the diagram

k(X)) —2C2D

(2-3) Wyl i—'lM

k(X)) /k({X))z0 ——5— Mg

commutes.

We will prove this proposition by using the following general lemma. In this lemma,
for any k-module M and any k-submodule M’ let us denote canps p : M — M /M’
the canonical projection.

Lemma 2.1.7. Let f: M — N a k-module morphism. Let M' a submodule of M and
N',N" two submodules of N such that

(a) f(M'YC N' C f(M')+ N" and,

(b) cany y» o f is an isomorphism,

Then, there is a unique k-module morphism f : M/M' — N/(N'+ N") such that the
diagram

M—t N

(24) CanM’M/l JrcanN’N/_,_N//
M/M' —— N/(N' 4+ N)

commutes. Moreover, f is a k-module isomorphism.
Proof. First, f: M/M' — N/(N' + N") is well defined since f(M’) ¢ N' ¢ N’ + N".
Next, let us show that this k-module morphism is an isomorphism.

Injectivity: Let u € M/M’ be such that f(u) = 0. Let m € M be such that p =
canyz pr(m). By the commutativity of the diagram (2.4)), the assumption on p implies
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that f(m) € N’ 4+ N”. But, since N' C f(M') + N"” we get f(m) € f(M')+ N".
Therefore there exists m’ € M’ such that f(m) € f(m’) + N” then f(m —m’) € N”.
This means that cany o f(m—m’) = 0. Finally, since cany, y~ o f is an isomorphism,
this implies that m = m’ (elements of M). Since m’ € M’, this implies that m € M’.
Therefore, p = canpy p(m) =0 M/M'.

Surjectivity: Diagram (24]) can be extended to the commutative diagram

f canpy n/

M N : s N/N"
CanM,M'l lcanN,N/-{—N” J’canN/Nu’N//(N/mNu)
M/M' —— N/(N'+ N") < (N/N")/(N'/(N' N N"))
N,N',N"

where ison n7 N7 : N/(N' 4+ N") — (N/N")/(N'/(N'" N N")) is the canonical isomor-
phism. We then obtain

N/(N" 4+ N") =isop ys xu (N/N")/(N' /(N A N")))
:isoj_\,}N,7N// O Cann/N" N'/(N'NN") (N/N")
:isoj\,’lN,,N// o can /N N /(N'ANw) © cany, yi o f (M)
:isoj_\,}N,’N,, oison n/ v o focanpy (M) = fF(M/M')

where the first equality comes from the fact that isoy y/ v is k-module isomorphism;
the second one from the fact that cany/n» n//(n'ANv) 18 & surjective k-module mor-
phism; the third one from the fact that cany y~ o f is a k-module isomorphism; the
fourth one from the commutativity of the external square; and the fifth one from the
fact that canys psv is a surjective k-module morphism.

O

Proof of Proposition [2.1.6. This is done by application of Lemma[?ZEZlfor M =k{(X)),
N =Vg, M' = k((X))xg, N' = Vgeo, N > geG —1)and f=pFo(—®1).
It, therefore, sufﬁces to prove that criteria @ and @ of Lemma 217 are satisfied.

Criterion [(a)} S Voo ®1) C Vaeo C k(X)) zo @ 1) + 2 ogeG\{1} Val(g—1).
For the first inclusion, we have for any a € k((X))

Blarg® 1) =Fa®1)B(xg® 1) =F(a®1)ey € Vaeo.

Therefore, B(k({X))zo ® 1) C Vgeo.
For the second inclusion, by using the basis of Vg described in Proposition 2.T.4] we
have for r e N, n1,...,n.41 € N* and g1,...,9,41 € G,

(681_19161 R egr’lgrelegr“*lgm) eo = ey grer- g tgrerey T gri
= (=1)"B(zp" ™~ 19591 R 19591 ger "®g1 gry1)
= (_1)7’IB (<$81_1$g1 .. .xgr 13791 . 0 +1— > 2o ® 1
=(-1)'B ((xgl 1%1 g 1%1 grl"grﬂ 1) xo® 1

+(-1)"B ((mgl_lxgl szt lmgl grxgr“ 1) o ® 1) (g1 gre1 — 1)

g1 Gr+1

—— ——
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where the first equality comes from the relation gey = egg for any g € G; the second one
from computation (2.2]) and the third one from the fact that azo®g = (axo®1)*(1®g)
for any a € k((X)) and any g € G. Finally, the last equality shows that we obtain an
element of B(k({(X))zo @ 1) + > ccn 1} Va(g — 1), thus proving the claimed inclusion.

Criterion [(b)} The map cany, 5 P(g-1°Bo(=®1) 1 k(X)) — V(;/ < > Valg— 1))
geGV{1} geG\{1}

is an isomorphism.

Let us consider the commutative diagram

id®o
k(X)) ® Byeen oy kG —5 k(X)) @ kG

! H

(2.5) ®,ccnny k(X)) ®kG) — k(X)) © kG
Doecri1y @ Jﬁ
Dyearpy Ve =

where in the horizontal arrows we have the k-module morphisms

D Ve — Ve, (Wgearpy — Y velg—1)
geG\{1} geG\{1}
and
P kG —kG, (hg)geariy — D, helg—1).
geG\{1} geG\{1}
Since the vertical arrows are isomorphisms, they induce an isomorphism beteween the

cokernels of the top and bottom morphisms. We can then extend the above diagram
in the following way

k(X)) ® Dyecn 1) kG % k(X)) ©kG —— coker(id @ o)

! |

(2.6) Dyec ) k(X)) ®kG) —— k(X)) @ kG
Dgecr(1y Bl lﬂ
@gec\ﬁ} Vo S Vo coker(X)

On the other hand, we have

coker(X / Z VG —1)

geEG\{1}

coker(o / -1) ] ~k.
gEG\{l}

and
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Then
coker(id ® o) ~ k{((X)) ® coker(o) ~ k{((X)) @ k ~ k{(X)).
Thus, the isomorphism between cokernels establishes that k((X)) is isomorphic to
Vo / <Z geC\{1} Valg — 1)) Moreover, thanks to the commutativity of diagram (2.0]),
this isomorphism is exactly CaNy . s~ Yig(g-1) © Bo(—®1).
geG\{1}
U
Corollary 2.1.8.

(a) The following diagram

k((Y)) = » We

(2.7) ﬂyl l"w

k((X))/k{(X)) xo T MG

commutes, where @ : k((Y)) — W is the k-algebra isomorphism uniquely defined
bY Yn,g — 2ng and q is the k-module automorphism of k((X))/k{(X))xo given in

(b) The map — - 1pq : We — Mg is a k-module isomorphism and Mg is free of rank
1 as a Wg-module.

Proof.

(a) One needs to show the equality of two maps from k((Y)) to M. Since these maps
are both k-module morphisms, it is enough to show the equality of the images of the
elements of a basis of the source module. Such a basis is (Yn1,g; * ** Un,g, Jrr,...nr €N

gl7"'7g’l‘€G
([Rad], §2.2.7.)
For r e N, ny,...,n, € N*and g1,...,9, € G we have

(—-1pm)o w(ym,m “‘ynr,gr) = Zny,grt Bnegr T AM

On the other hand,

—1 _ ni—1 ni—1
KoqQ  omy (Unigr * Ynpgr) = K(Tg" Tg - Tg" " Tgyong,)

1 -1
=B(xg" " gy Q" Tgyeg, @ 1) - I

1

— (_1)7"681*19161 .. egrilgrelglil e gr_ . 1M

ni—1 ne—1

= (—ep' gre1) - (—eg™ gre1) - Im
= Zny,grt Bnegr T AM

where the first equality comes from [Rac|, §2.2.7; the second one from the com-
mutative diagram (2.3]); the third one from computation (2.2)) with n,; =1 and
gri1 = (g1---g-)~1; and the fourth one from the fact that for any v € Ve and any
g € G, we have vg - Iy = v - 1.

(b) First, the following maps are k-module isomorphisms:
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e w: k((Y)) = Wg : it sends the basis (Yni,g1 ** Ynrogr )reNny,...neen of the
gl?"'ngeG
k-module k{((Y)) to the basid] (Zn1,g1 " Znpgr JreNoma,...meeNs of Wa.
gly"'ygTEG

o y : k{({(Y)) = k((X))/k{({X))xg : see [Rac], §2.2.5.

e koq L k{((X))/k({X))zg — Mg : see Proposition Z.1.6] and [Rac], §2.2.7.
Next, the diagram (IZ'_ZI) commutes, thanks to[(a)] This allows us to conclude that
the map — - 14 : : We — Mg is a k-module isomorphism and that Mq is a free
Wega-module of rank 1.

g
Remark The composed algebra morphisms k((Y)) = Wg < Vg and k({(Y)) <
k{(X)) pel=gh) Vg do not coincide when G # {1}.

Now, we are able to put more structure on We and M¢. More precisely, we are
going to define a coproduct We and a coproduct on Me.

Proposition-Definition 2.1.9.
(a) There exists a unique topological k-algebra morphism Aé\/ :We — (Wg)®2 such
that for any (n,g) € N* x G
n—1

(2.8) Aév(zn,g) =g ®1+1®2zp4+ Z Zkh & Zp_k,hg=1-

k=1
heG

The pair (Wg, Aé\/) is then a topological bialgebra.

(b) There exists a unique topological k-module morphism AN : Mg — (Mg)®? such
that the following diagram

AY

(We)®?

We
(2.9) f.l@ |-z
Me

(Mg)®?

A
commutes. The pair (Mg, AG ) is then a cocommutative coassociative coalgebra.
(¢) For any w € Wg and any m € Mq we have
(2.10) AM(w -m) = AW (w) - AX (m).
Proof.

(a) This is a consequence of Proposition
(b) This is a consequence of [(a)] and Corollary
(c) Since — - 1pg : Wea — Mg is a k-module 1smorph1sm for m € M¢ there exists a
unique w’ € We such that m = w’ - 1p¢. We then have
A (w-m) = Agt(ww' - L) = A (w') - 157 = A (w)AZ (w') - 157

= A (w) - (AP () 153) = Al (w) - A (w' - 1) = A (w) - A (m)

Tsuch a family is a basis of WG thanks to Proposition 2.1.5]
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where the first and the fourth equalities come from the fact that — - 14 : We —
M is Wg-module morphism; the second and the fifth one from the commutative
diagram (2.9) and the third one from the fact that Aév is a k-algebra morphism.

O

2.2. Actions of the group (G(k((X))),®) by automorphisms. We recall that the
map 3 : k((X)) x G — Vg is the k-algebra isomorphism given in Proposition 213[(b)]

2.2.1. Actions of (G(k((X))),®) by algebra automorphisms.

Proposition-Definition 2.2.1. Let ¥ € G(k{((X))). There exists a unique topological
k-algebra automorphism autzfj(o) of Ve such that

(2.11) correo; e BT @)eB(T®1); g g, forg€QG,
V,(0)

Proof First, let us verify that the images by the morphism auty" " of the generators

of Vg satisfy the relations of V. Indeed, for g,h € G we have:
o auty, V(0 )(1g) = 1G =1= autv (O)( 1);

o autv( )(g) X auty,’ (0)(h) =gxh=gh= aut}f,’(o)(gh);

. aut\p’( )(g) X autg’(o)(eo) =gXxXeyg=e€yXg= aut]\f,’(o)(eo) X auty, v.(0) (9).

This proves the existence and uniqueness of the algebra endomorphism autg’(o). Next,

V,(0)

in order to prove that auty” " is an automorphism, we show that the diagram

k{((X)) x G i s Va
(2.12) auw@dwl aut 2 (®)
k(X)) x G 5 » Vo

commutes, where auty is the k-algebra automorphism in (L6). Since all arrows of
Diagram (2.12]) are k-algebra morphisms, it is enough to check the commutativity on
generatorS'

o aut Vo Bleg®@1) = autv( )(eo) = eg and

Bo (autqj ® idka) (o ® 1) Blauty (z9) ® 1) = Bz ®@ 1) = ep.
e For g € G, autg’(o) ofB(l®g) = auti’( )(g) =g and

Bo (auty ® idke) (1 ® g) = Blauty (1) ® g) = Bl ® g) =
e For g € G, aut]q),’(o) of(rg®1) = aUt]q)/( )( —ge1gt) =

and

—gﬁ( ® e f(T @ 1)g~!

Bo (auty ® idie)(ry ® 1) = Bauty(z,) @ 1) = Bt, (¥ Nzt (V) ® 1)
=1y (P ') x(1eg Hx(z0)x(1og*(Tal)*x(1ag"))
=810 gpP e )sleg )b, 1)1 g)f(Te)Blog™"))
=gB(V ' @ 1)g~ (—gerg™ )gB(¥ @ 1)g ™"
=—gB¥ @)Y l)g !
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Finally, autg’(o) is an automorphism thanks to the commutativity of diagram (212

and the fact that 8 : k({(X)) x G — Vg and auty ® idkg : k(X)) x G = k(X)) x G
are k-algebra isomorphisms. O

Definition 2.2.2. For ¥ € G(k((X))), we define aut]\f,’(l) to be the topological k-algebra
automorphism of V¢ given by

v(1) V,(0)

(2.13) auty™ = Adgwer) o auty 7,

Proposition 2.2.3.
(a) There is a group action of (G(k((X))),®) on Vg by k-algebra automorphisms

(GOK((X))), ®) — Autic_aig(V), ¥ — anty
(b) There is a group action of (G(k((X))),®) on Vg by k-algebra automorphisms
(G06((X))), ®) — Auti_ais(Va), ¥ — anty

Proof.
(a) Let us show that for any ¥, ® € G(k((X))), we have
aut}f,gg = utv (0 autv (O).

It suffices to prove this identity on generators. Since for ¥ € G(k((X))) we have

(0)(

auty, " (eg) = ep and auté’(o)(g) = g, this is immediately true for ¢y and g € G.

Next
auty ) (e1) =B(T® @) ' @ De1 (¥ @ @) ® 1)
=B(auty (@ )T @ 1)e, B(Vauty () @ 1)
=Blauty (27 @ )BT @ 1)e1/3<\lf ® 1)5(auw( )®1)
:autg () B(d~! ®1))aut (el)aut (5( ®1))
B@ @ 1)eif(@®1))

v, v,
qy(O) (0)( 1)

o aut

where the fourth equality comes from the commutativity of Diagram (2.12]).
(b) Using Identity [(a)} we get

anty Vo auty ™ =Adgen) o auty” o Adggen) o auty”
=Adgwer) © Adautg,m)(ﬁ(q)@l)) o autg’(o) o autg’(o)
=Adgwe1)sauts (@)o1) © auty ) o auty
=Adg(weayen © autyly = auty iy,

g

Proposition-Definition 2.2.4. For ¥ € G(k((X))), the automorphism auté’(l) :
Va — Vg restricts to a topological k-algebra automorphism on the k-subalgebra We
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uihich will be denoted autév’(l). Moreover, there is a group action of (G(k{((X))),®) on
Wea by k-algebra automorphisms

(2.14) (G(k((X))), ®) — Auty_ag(We), ¥ — autly ),

Proof. For w = \+vey € We, we have

auty Y (w) =A + auty P (0)(F © DT © e ST @ )BT @ 1)

=)+ aut]q),’(l)(v)el e We.
1)

This implies that auth),’ induces a k-algebra endomorphism of We. Moreover, the
preimage of this endomorphism under the k-module isomorphism k X Vo — We,
(A, v) = X+ ve; is the pair (id,autg’(l)), which is a k-module automorphism. This
implies that autgv’(l) is a k-module automorphism, and therefore a k-algebra automor-
phism. Thanks to this, the second part of this result can be deduced from Proposition

by restriction on Wg. O
2.2.2. Action of (G(k{((X))),®) by module automorphisms.

Definition 2.2.5. For ¥ € G(k((X))), we define aut]q),’(w) to be the topological k-

module automorphism of Vg given by
(2.15) autg’(lo) = Lgwel) © auth),’(o),

Remark. Let us notice that, for any ¥ € G(k((X))), we also have

V,(10) (0) )

aut\l, = gﬁ(‘l’@l) (e] autg’ 0 (1)

V, Vv
= 65(‘11(81) o Adﬁ(qj—1®1) o aut\p = TB(\P®1) ] aut\I,

Proposition 2.2.6. There is a group action of (G(k((X))),®) on Vg by k-module
automorphisms

(G((X))), ®) — Autic moa(Va), ¥ —> aut ) (”

Proof. For ¥, ® € G(k((X))), we have

8mt}l;/’(w) © aUt};(w) =lawer) © aUt}I}/(O) o lg@e1) © autg’(o)
V,(0 V,(0
=Lawer) © gautgio)(g(@@l)) o autq,( ) o auty, ©
V,(0 V,(0
:gﬁ(\y@l)ﬁ(aut\p(@)@l) o aut\lj( ) 9] alltcb ©)

V,(0 V,(10
=lg((ved)21) © autwéqz = autqfécp)-

where the last equality comes from the commutativity of Diagram (2I2]) and from
Proposition O
Lemma 2.2.7. For any ¥ € G(k((X))), we have the following identities:

(2.16) Va,b € Vg, aut " (ab) = auty 1 (a) auts @ (v).

(2.17) Ya,b € Ve, aut‘\f,’(lo)(ab) = aut}fj(l)(a) auti’(lo)(b).
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Proof. Let a,b € Va. We have
auty, ' (ab) =Coqwen) 0 auty  (ab) = Ly (auty ¥ (a) auty @ (1))
= <€5(\1,®1) o autz’(o)(a)) autzfj(o)(b) = autg’(lo)(a) autg’(o)(b)
and
auty, ' (ab) =) 0 auty ™ (ab) = rawen (auty ™ (@) auty M v)
:auti’(l)(a) <7"5(\1,®1) o autg’(l)(b)) = autg’(l)(a) autg’(lo)(b)
U
Proposition 2.2.8. For ¥ € g(k(<X>>A), the k-module automorphism aut]\f,’(w) pre-
serves the submodule Vgeo + 3 e 1y Valg — 1)

Proof. Using Lemma ZZ2Z7E.T6, we obtain for any a € Vg and (by)gec € (Vo) :

autg’(lo) aeqy + Z by(g—1) | = aut‘\;’(m)(a)aut};’(o)(eo) + Z autg’(lo)(bg)autg’(o) (g—1)

geG\{1} 9eG
=auty "V(@)eo + > auty Vb)) g -1 €Voeo + Y. Valg 1)
geG\{1} 9eG\ {1}
]

Proposition-Definition 2.2.9. For U € G(k((X))), there is a unique k-module au-
tomorphism autg/l’(w) of Me such that the following diagram

. ut?+(10) .

Va w Va

| o
Mg M (10) Mg
au o

commautes.
Proof. Follows from Proposition 2.2.8] O
Lemma 2.2.10. For any ¥ € G(k((X))), we have
(2.18) Y(a,m) € Vg x Mg, autf’(lo)(a -m) = aut}fj(l)(a) . autg’(lo) (m).
(2.19) Y(w,m) € Wg x Mg, aut/\l\,/t’(lo) (w-m) = autz,v’(l)(w) . aut/\l\,/t’(lo) (m).

Proof. The first identity is proved by using a combination of Proposition-Definition
2.2.9 and Lemma 22.7(2.I7)). The second identity can be deduced from the first by
restriction on the subalgebra We. O

Corollary 2.2.11. There is a group action of (G(k((X))),®) on Mg by topological
k-module automorphisms

(2.20) (GK((X))), ®) —> Autic mod (M), ¥ — auty"!
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Proof. Tt is a combination of Proposition-Definition 2.2.9] and Proposition 2.2.6] O

2.3. The cocycle I' and twisted actions. To an element ¥ € G(k((X))), one asso-
ciates I'y € k[[z]]* (see (II6])). Then I'y(—eq) is an invertible element of V.

Definition 2.3.1. For ¥ € G(k((X))), we define the topological k-algebra automor-
phism of Vg:
(2.21) Pauty W = Adpoa 0 auty .

Proposition-Definition 2.3.2. For ¥ € G(k((X))), the automorphism Tauty, Vi) e

stricts to a topological k-algebra automorphism of the subalgebra We denoted I1autw (1)

Proof. Follows from Proposition-Definition [2.2.4] and the fact that I'y(—e;) is an in-
vertible element of Weg. O

Proposition 2.3.3.
(a) There is a group action of (G(k((X))),®) on Vg by topological k-algebra automor-

phisms

(2.22) (GK((X))), ®) — Auti_mod (fzg) ¥ — Taut) ™

(b) There is a group action of (G(k((X))),®) on Wg by topological k-module auto-
morphisms

(2.23) @MW»@—MMWMMQ@~>MW”

Proof.

(a) It follows from Proposition 2Z2.3(b)|, Lemma [[.2.8 and the fact that e; is invariant

under aut,, V- for any U € G(k((X))).
(b) It follows from [(a)] thanks to Proposition-Definition 2241

O

Definition 2.3.4. For U € G(k((X))), we define the following topological k-module
automorphism of Mg:

(2.24) I1au‘cM (10— = P! (—ep) © AUt
Lemma 2.3.5. For any ¥ € G(k((X))), we have
(2.25)  V(a,m) € Vg x Mg, Fautg/l’(lo) (a-m)= autv (1)( ) FautM (10) (m)

(2.26)  Y(w,m) € Wg x Mg, autM( 0)(w -m) = Tauty, w )(w) . Faut\P ’(10)(m)
Proof. Follows by a computation involving Lemma 22,10 O

Proposition 2.3.6. There is a group action of (G(k{((X))),®) on Mg by topological
k-module automorphisms

(2.27) (GK((X))), ®) —> Atttic_moa (Mg ), ¥ — Tauy* ("
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Proof. For any ¥, ® € G(k((X))), we have

M, (10 M, (10 M, (10
Faut\I,OEI> ) =L O aut\I,OEI> ) — lr- e )3 (—er) © aut’y, (10)

/vr ,(10) M, (10)

o autM ,(10)
\p@cp(_e

—€ (el)oﬁ (e)oaut o auty,

:Er‘il(iel) o auty, M,(10) lh- l(=er) © autM ,(10)

1
r_,. M, (10) T

P 10) § Ty M10)

t
®
where the seoncd equality uses Lemma [[.2.8] and Corollary 2.2.11t and the fourth
equality comes from the following computation:

1 oaut/\l\,/t’(lo)(m) =I'y'(—e )autM’(lo)(m) autv (1)( Iyl (— el))autM (10)( )

Iyt (—er)
M, (10 M, (10
=auty, o )(I’@ (—e1)m) = auty, (1 )of e el)(m)
for any m € Mg; where the second equality uses the fact e; is invariant under aut]q),’(l)
and the third equality comes from Lemma 2210 O

2.4. The stabilizer groups Stab(A%Y)(k) and Stab(A}!)(k). Using Proposition 23.3]
. L\ 92
we define the following group action of (G(k((X))),®) on Mork_,ig <Wg, (Wg) >:

(2.28) DW= (Tauty” (1)> oD% o (Taut), (”)
In particular, the stabilizer of Aév is the subgroup
~ ®2 ~ ~
(2.29) Stab(AW)(k) = {\1/ € G(k((X)))| (Fautg‘*(”) o AW = AW o Fautg‘“”} .

Similarly, Proposition provides a group action of (G(k((X))),®) on the k-
- A\ ®2
module Mork_mod (Mg, (./\/lg> ):

®2 1
(2.30) v. DM — (Fautg/"(m)> o DM o <Faut$/l,(10))

In particular, the stabilizer of Aé" is the subgroup
(2.31)

Stab(AN) (k) := {qf e G(k({X))) | (Fautym))@ o AM =AM o Fautym)} .
We then have the following inclusion of subgroups
Theorem 2.4.1. Stab(A}!)(k) C Stab(AW)(k) (as subgroups of (G(k{{X))),®)).
Proof. Let ¥ € Sta b(Aé")(k) First, let us notice that
(2.32) (O3t (—enB(E @1) - 1) * = (Pant 00 (100))

®2 . -
= (Faut{;’(lo)) o AéA(lM) = Ag‘ o Fautfl\ft’(lo)(1/\/1),
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where the last equality follows from the assumption on ¥. Then for any w € Wg,
(2.33) AW <Fautgv’(”(w)> AT (—e) BT @ 1) - 1)
Y (Tauty O (w)) - AY (Tauty 1O (1)
=AM <Fautév’(1)(w) I autg’(lo)(lM)) =AM <Faut/\1\,4’(10) (w - 1M))
®2 . ®2 /. ~

= (TautX19 o AM(w - 1) = Taut 00 AW (w) - AX (1pm

N4 G v G G

Wi, (1 ®2 /. M,(10 ®2 /.
(Fautq, ( )) (Aév(w)> . (Fautq, ( )) (AéA(lM))

®2 /.
— (Taut?W A¥ (w)) - (T (—e1)B(T @ 1) - 1 g 2
o G o

where the first and seventh equality come from (2.32]), the second and the fifth from
Proposition-Definition ZZI.9(c)] the third and the sixth from Lemma[235and the fourth
from the fact that U € Stab(AéA)(k). Next, since I'y'(—e1)3(¥ @ 1) is invertible in
Ve, the map W — Mg, w — wfgl(—el)ﬁ(\I’ ® 1) - 1p¢ is an isomorphism of left
We-modules. Consequently, Identity [233) implies that

A ®2 /. A
(2.34) Yw € W, (Fautlﬁ)’(l)> <Aév(w)> =AW <Fautév’(1)(w)) ,
thus establishing that ¥ € Stab(AéV)(k). O

3. THE STABILIZER GROUPS IN TERMS OF RACINET’S FORMALISM

In this part, we translate the inclusion of stabilizers in Theorem 2.4.1] into Racinet’s
formalism. In §3.I1 we relate the various (G(k((X))), ®)-actions we recalled from [Rac]
in §Iland the ones we constructed in §2. This allows us to identify the group Stab(Aé")
from (Z3I) with the group Stab(A™°d) from [EF0]. In §3.2 we transport the action
of the group (G(k((X))),®) on Wg given in into an action of the same group

on the algebra k((Y')) and express the latter action in terms of Racinet’s formalism.
This enables us to identify the stabilizer group Stab(A’C/})) given in with a group
Sta b(Ailg) defined in the framework of Racinet’s formalism. The inclusion of stabilizers
from Theorem A is then expressed as the inclusion Stab(A™°d) C Stab(A¥8) (see

Corollary B.2.5)).
3.1. Identification of the subgroups Stab(A}!) and Stab(Ared).

3.1.1. A (G(k((X))),®)-module isomorphism. Let us recall §: k((X)) x G — Vg the
k-algebra isomorphism given in Proposition m@

Lemma 3.1.1. For ¥ € G(k((X))), the following diagram
Bo(—®1 ~
k(X)) —2 Vo
(31) autq,l laut\q},’(o)
Ve

k(X)) e
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commutes; where auty is the k-algebra automorphism of k({X)) given in (1.0) and

(0)

aut]\f,’ is the k-algebra automorphism of Ve given in Proposition-Definition [Z.21.

Proof. This is done by left composing Diagram (2.12]) with the following commutative
diagram

k(X)) =% k(X)) % @

aut\pi J’aut\p(@idkg

k(X)) — k(X)) % G

Lemma 3.1.2. For ¥ € G(k((X))), the following diagram

Bo(—®1 ~
k(X)) —2E8D 5

(3.2) S‘I’l laut\\f,’(lo)

AG

k({X0) Bo(—®1) v

commutes; where Sy is the k-module automorphism of k((X)) given in (I.7) and

aut]q),’(w) is the k-module automorphism of Vg given in (215).

Proof. Thanks to Identities (I7) and (2.15]), this is done by composing from the bottom
Diagram (3.1) with the following commutative diagram

k((x))

Vo
Ewi ymm

k(X)) e Vo

Lemma 3.1.3. For ¥ € G(k((X))), the following diagram

(33) Sgl autgl’(lo)

commutes; where SY is the k-module automorphism of k((X))/k{((X))zo given in
Proposition-Definition [1.2.0, aut/\l\,/l’(lo) is the k-module automorphism of Mg given
in Proposition-Definition 229, « : k((X))/k((X))xq — Mg is the k-module isomor-
phism in Proposition and q 1is the k-module automorphism of k((X))/k{((X))xo
given in {11
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Proof. Let us consider the following cube

k(X)) /k((X))o " Mg
qw/ —1m
k<(X>) Bo(—®1) )}G
S}p/ autgl’(w)
Sw auti’(m)
k(X)) /k((X))o — Mg
~ + —1aq
(X Bo(~@1) Ve

First, the left (resp. right) side commutes by definition of SY (resp. aut/\l\,/t’(lo)). Then,
the upper and lower sides are exactly the same square, which is commutative thanks to
Proposition Finally, Lemma gives us the commutativity of the front side.
This collection of commutativities together with the surjectivity of q o my implies that
the back side of the cube commutes, which is exactly Diagram (3.3)). O

Proposition 3.1.4. For ¥ € G(k{((X))), the following diagram

1

k(X)) /k((X))z0g —T—— Mg
(34) FS‘}’/\L iraut.\;/l,(w)

k((X))/k{(X))zo T MG

commutes; where FS}IC and T auty’(w) are respectively k-module automorphisms of
k(X)) /k((X))xo and Mq. It follows that ko @' is an isomorphism between the
(G((X))), ®)-moduled k(X)) /k((X))zo and M.

Proof. This is done by composing from the bottom Diagram (3.3) with the following
diagram

k(X)) /K((X))zo — s Mg

[
Z%%nl l ry(=en)

k{(X))/k{(X))zo T MG

8see Corollary 23] (resp.  Proposition B3.6) for the (G(k((X))), ®)-module structure of
k(X)) /k{{(X))zo (resp. Mc)
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which we show is commutative. Indeed,
eril(*el) ok Oail °cqomy = EF;(*el) o(=-Ipm)ofo(-®1)

= (_ : 1M) Og@(rgl(m)@n ofio (_ ® 1) = (_ : 1M) ofio (_ ® 1) Ogrgl(wl)
= /{oc_lfl oqomy OEI‘gl(xl) = /-goc_lfl OEI‘;l(ml) oqomy

where the first and fourth equalities come from the commutativity of Diagram (2.3));
the second one from the fact that — - 1pq : Vg — ./\/lq is a Vg-module morphism; the
third one from the fact that fo (— ® 1) : k((X)) — V¢ is a k-algebra morphism and
the last one from the fact that my : k((X)) — k{({(X))/k{(X))zo is k((X))-module
morphism and that for any a € k((X)), q(z1a) = z1q(a).

Finally, since q o my is a surjective k-module morphism, it follows that

1 1
gl e orod =rod ol

which is the wanted result. O

3.1.2. An isomorphism of coalgebras. Let us recall w : k({(Y)) — Wg the k-algebra
isomorphism given in Corollary

Lemma 3.1.5. The following diagram

k(Y)) ——F—— Wg
(3.5) Ailgl JAg’
k((V)®? ——— Wg?

commutes; where A™® (resp. Aév) is the coproduct of k((Y)) (resp. W) given in ({1.7)
(resp. (2:8)). In other words, the map w is a bialgebra isomorphism.

Proof. Since all arrows on diagram (B.5]) are k-algebra morphisms, it is enough to work
on generators. For (n,g) € N* x G we have

n—1
w®? 0 Ailg(yn,g) —®? Yng @1 +1Ryn g+ Z Yk,h @ Yn—k hg—1
k=
=
n—1
=Zn,g @ 1+1® Zn,g t+ Z Zk,h © Rn—k,hg=1:
k=1
heG
On the other hand
n—1
AY 0 @(yng) = Al (2n,g) = 2ng @1+ 1@ Zng + D 2n ® Zy_pg-
e
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Lemma 3.1.6. The following diagram
k(X)) k(X)) a9 — s Mg
(3.6) A?odl JAQJA
(K (X)) /K((X) )g) =2 ME?

_
(rog~1)®2

commutes; where AP (resp. AM) is the coproduct of k((X))/k{({X))xo (resp. Mg)
given in (L3) (resp. (2.9)).

Proof. Let us consider the following cube

y»/k«xmo Ma
k(¥)) . We
Agpod Ay
At AY
(X)) (X )10) % sy M
/ /&M)@2
k((Y))®2 — W

First, the left (resp. right) side commutes by definition of Af“’d (resp. Aé/() Then,
the upper side commutes thanks to Corollary 2.1.8] and the lower side is exactly the
tensor square of the latter so is also commutative. Finally, Lemma gives us the
commutativity of the front side. This collection of commutativities together with the
surjectivity of my implies that the back side of the cube commutes, which is exactly

Diagram (3.6)). O
3.1.3. Identification of stabilizer groups.
Theorem 3.1.7. Stab(A}!)(k) = Stab(A°%)(k) (as subgroups of (G(k((X))),®)).

Proof. Thanks to proposition B4} the map xoq ! : k((X))/k({(X))zg — Mg is a
(G(k{(X))),®)-module isomorphism. So, it induces a (G(k((X))),®)-module isomor-
phism  Mori—mod (k{{X)) /k{(X))zo, (k({(X)) /K({X))20)®?) = Mork_mod(Ma, M)
which is given by
A (koq@ H®20Ao(kog Nt

(see (L20) for the definition of the (G(k((X))), ®)-module structure on the k-module
Mork—mod (k{{X)) /k{(X))z0, (k{{X))/k((X))z0)*?) and @Z30) for the (G(k{(X))), ®)-
module structure on the k-module Mory_ 1,04 (Mg, M%Q)) Moreover, thanks to Lemma
B.1.6l the coproduct Af“)d is sent to the coproduct Aé" via this isomorphism. Thus,
they have the same stabilizer. O
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3.2. The stabilizer group Stab(AéV) in Racinet’s formalism.

Proposition-Definition 3.2.1. For ¥ € G(k((X))), we denote Yaut} the k-algebra
automorphism of k((Y))

(3.7) Tauty, :=wlo Fauutgv’(l) ow

where Fau‘cév’(l) is as in Proposition-Definition[Z.3.2, @ : k((Y')) = We as in Corollary
[Z1d(a)l Moreover, there is a group action of (G(k({(X))),®) on k((Y)) by k-algebra

automorphisms given by

(3:8) G(k((X))) — Autic_ag(k((Y))), ¥ — Tauty,
Proof. For ¥, ® € G(k((X))) we have
Faut)é@@ =wlo Fautévé%) ow=w lo Fau‘c?}’(l) o Fau‘cg)\}’(l) ow
=w lo Fautl\;,\)’(l) owow to Fautll/)v’(l) ow = I1aut1\£ o Fautg

0

We aim to give an explicit formulation of the action "autY in terms of Racinet’s
objects. Recall from §I.1] that for any g € G and any a € k((X)), azy € k((Y)). We
then have the following Lemma:

Lemma 3.2.2. Let g € G. For any a € k((X)) we have B(axy ® g) = w o qy (axy).

Proof. 1t is enough to show this on a basis of the k-module k((X)). For r € N,
ni,...,Nryr1 € N and g1,...,9, € G we have

n1—1 nyp—1 np41—1 o r ni—1 -1 ny—1 —1 npqp1—1
Bzg' T xg, -y xg, Ty ra®g)=(—1)"e;" "gieig; ---eq” greig, € gel

1

_ (_1\yrn1—1 Coone—1 —1 ne+1—1 —1 _
=(-1) eyt gier ey’ g, 19re1€ Gy ge1 = Zny g Znrg g P g g

where the second equality comes from a computation similar to (2.2)) and the third one
from the fact that for any i € {2,...,r}, gi_leo = eogi_l. On the other hand,

ni—1 ny—1 np41—1 o .
wo qY(xO Lgr =+ Lo Lgr Lo 'Ig) - w(ym,m ynr,g;_llgrynr+1,gflg)

= Zni,01 " znr,g;llgr “npga,9v by

Proposition 3.2.3. For ¥ € G(k{((X))) and (n,g) € N* x G we have
(3.9 Pauty (yn4) = v (F;l(xl)\lfngltg (\Iffll\p(xl)) Tg) -

Proof. Let us start with the following computation

Pauty @ (2, ) = T3 (—e)) BT @ 1)el 1gB(T " @ 1)er Ty (—ey)

= T3 (—e)B(¥ @ eg ' gB(¥ ™ @ 1)l y(—er)er

BT ) © 1)« (T 1) (@ @ 1)+ (10 g) 5 (UL @ 1) Ty (1) @ 1) % (21 @ 1)
=0 (I’E,l(xl)\lfngltg (\I’_ll\p(ml)) g)

= woay (g (z)¥af 1, (¥ 'Ty(r1)) 7,)
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where t, is the k-algebra automorphism given in §I.1} and the last equality comes from

Lemma [3.221 Thanks to this, we have for any (n,g) € N* x G,

_ w,(1
Pauty (yn,g) = w Lol auty ™V o w(yn,) = w

=w lowoaqy (Iy'(z1)Wag 'ty (W 'Ty(21)) z,)
= ay (I (21)Wag 'ty (U T (1)) 7).

-1 W, (1)

o Mauty " (2,4)

O

Using Proposition B.2.1] we define the following group action of (G(k((X))),®) on
Moric—aig (k((Y)) . k((¥))%2):

(3.10) U.D:= (Fau‘cg)@2 oDo (Fautzlf)_1 .
In particular, the stabilizer of A8 ig the subgroup

(3.11)  Stab(A¥)(k) := {qf € Gk((X))) | (Cantly)®* o A = At o Fautg} .

Theorem 3.2.4. Stab(A%)(k) = Stab(AW)(k) (as subgroups of (G(k{({(X))),®)).

Proof. Thanks to Proposition-Definition B2.1] the map w : k((Y)) — W is an isomor-
phism of (G(k((X))), ®)-modules. So, it induces a (G(k((X))), ®)-module isomorphism
Mory e (k((Y)), k((Y ))®?) — Mory_us(We, WE?) which is given by

A w®2oAow !

Moreover, thanks to Lemma [B.1.5] the coproduct A8 is sent to the coproduct A‘é‘) via
this isomorphism. Thus, they have the same stabilizer. O

Corollary 3.2.5. Stab(Amod)(k) C Stab(A28)(k) (as subgroups of (G(k{({(X))),®)).

Proof. Follows immediately from Theorem [ZZ4.1] thanks to Theorems B.1.7 and B.2.41
]

4. AFFINE GROUP SCHEME AND LIE ALGEBRAIC ASPECTS

In this part, we show that the results obtained in §2] and §3lfit in the framework of
affine Q-group schemes and make explicit the associated Lie algebraic aspects. More
precisely, we use the result of [EF(Q] Lemma 5.1 to show that the stabilizer group
functors Stab(AéA) and Sta b(A/GV‘) are affine Q-group schemes, whose Lie algebras are
stabilizer Lie algebras which we make explicit. In order to carry out this program,
in §4.1] we define Lie algebra actions of (E%(X ), {-,+)) on f)g by derivations and by
endomorphisms. From this, we derive in §4.2] endomorphism actions on M, that leads
us to an explicit form of the Lie algebra of Stab(Aé") that we show to be equal to the
Lie algebra stab(A™°d) of (IL35). In §83, we define derivation actions on W that make
explicit the Lie algebra stab(Aé‘)) of Stab(A’C/})) which we show to contain 5tab(AJG\"). In
§4.4] we identify 5tab(AéV) with a Lie algebra stabilizer stab(A?'8) defined in Racinet’s
formalism by considering the infinitesimal version of the algebra automorphism given
in §321 We conclude by the inclusion stab(Amd) C stab(A8).
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. . < ~Q
4.1. Actions of the Lie algebra (£ib(X), (-,-)) on V.

Proposition-Definition 4.1.1. Let ¢ € El\b(X) There exists a unique Q-algebra
derivation derZ’(O) of Vg given by

e =0, er—[e,f(®1)], g—0, forged.
There is a Lie algebra action of (El\b(X), (,+)) on f)g by Q-algebra derivations

(Sib(X), (-,-)) — Dergag(V3), v +— der .

Proof. One can prove that the assignment k +— Autk_alg(f)g) is a Q-group scheme
with Lie algebra DerQ_alg(f/g) and that the map (G(k{((X))),®) — Autk_alg(fig),
U — autz’(o) is a morphism of Q-group schemes from k — (G(k((X))),®) to the latter

k — Autk_alg(fig) using Proposition 2.2:3[(a)l One checks that the corresponding
morphism of Lie algebras is as announced. O

Proposition-Definition 4.1.2. For ¢ € EiE(X), we define derZ’(l) the Q-algebra
derivation of f)g given by

(4.1) derz’(l) = adgyg1) + derZ’(O).
There is a Lie algebra action of (ElE(X), (,)) on f)g by Q-algebra derivations

(Si6(X), (-,)) — Dergag(VE), ¥ — der V.

Proof. Same as proof of Proposition-Definition ELT.1] replacing the morphism ¥ +—
aut]\f,’(o) by U — autg’(l) and using Proposition 2.2.3|(b)] O

Proposition-Definition 4.1.3. For) € EiE(X), we define endz’(lo)

endomorphism of )A/g given by

to be the Q-linear

V,(10) . _ V,(0)
(4.2) end,, 1= Lpper) +der, .
There is a Lie algebra action of (ElE(X), (,)) on f)g by Q-linear endomorphisms
(Sib(X), (-,-)) — Endg(VE), 9 — end) "),

Proof. Same as proof of Proposition-Definition .T.T], introducing the Q-group scheme
k — Autk_mod(f)g), whose Lie algebra is EndQ(f)g), and viewing ¥ — aut]q),’(w) as a
Q-group scheme morphism from k — (G(k((X))),®)) to k — Auty_moa(Ve) thanks to

Proposition 2.2.0] ]

4.2. The stabilizer Lie algebra stab(A}!).
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Proposition-Definition 4.2.1. For 1y € E%(X), there is a unique Q-linear endomor-
phism endﬁl’(lo) of ./\;((g such that the following diagram commutes

R end ~
Vg : Ve
(43) 7-1Ml lf-lM
~Q ~Q
MG endf’(m) MG

There is a Lie algebra action of (EE(X), (-,-)) on Mq by Q-linear endomorphisms
(Lib(X), (-,-)) — Endg(ME), v — end)" 7.

Proof. The commutative diagram is given by applying Proposition-Definition 2.2.9] for
k = Qle]/(¢?) and ¥ € ker (g(k((X})) — g(@((X}))) For the second statement,

one first checks that the assignment k — Autk_mod(Mg) is an affine Q-group scheme
whose Lie algebra is End@(/\/{g). Then, using Corollary 2.2.11] one deduces that the
map U — aut/\l\,/l’(lo) is a Q-group scheme morphism from (k — (G(k((X))),®)) to

dM,(lO)

k — Autk,mod(/\%g)). One finally proves that en is its corresponding Lie

algebra morphism. O

To 1 € £ib(X), one associates Yy € Q[[z]] (see (L28))). Then v, (—eq1) is an element
of Vg
Proposition-Definition 4.2.2. For 1) € Ei\b(X), we define the following Q-linear
endomorphism of M(g

(4.4) Tendy "1 = ¢ 10)

M7
—yp(—e1) + end¢ .

There is a Lie algebra action of (El\b(X), (-,-)) on ./\;((g by Q-linear endomorphisms
(4.5) (Sib(X), (-,-)) — Endg(Mg), s — Tend"!"

Proof. The maps ¥ +— autf’(lo) and ¥V —

from (k — (G(k{(X))),®)) to (k — Autk,mod(./\;l(;)) The Q-Lie algebra morphism
associated to the former Q-group scheme morphism is ¢ endﬁl’(w) by the proof
of Proposition-Definition 2211 The Lie algebra morphism associated to the latter Q-
group scheme morphism takes ¢ € £ib(X) to the right hand side of (£4) in view of

[224)), therefore is given by ¢ 7endﬁl’(lo). It follows that the latter map is a Lie
algebra morphism. O

M, (10)

N .
auty, are Q-group scheme morphisms

Thanks to this result, we are able to provide a Lie algebra action of (El\b(X), (,))
. ~ 0\ ®2
on the space Morg (./\/l@, <M%) ) via

(4.6) ¢-DM:= (Vendﬁ)"(m) ®id+id ® 7enolf’(m)> o DM — DM o Tend 10,
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In particular, the stabilizer of Aé/t is the Lie subalgebra
(4.7)

sab (A = { 1)
G (enay 0 @id +id @ vend 1) 0 DM = DM o rendyt

For a commutative Q-algebra k, recall the group Stab(Ag‘)(k) in (231). One then has

Proposition 4.2.3. The assignment Stab(A}!) : k ~ Stab(A})(k) is an affine Q-
group scheme and Lie(Stab(AM)) = stab(AN).

Proof. The first statement is obtained by applying [EF0], Lemma 5.1 where v = Aé" )
and the second one comes from the fact that the (Et\b(X ), (-, -))-action on Morg M%, (M%) ®2>
given in (48] is the infinitesimal version of the group action of (G(k({X))),®) on
Mork_mod <Mg, <Mg) ®2> given in (2.30), for any Q-algebra k. ]

Corollary 4.2.4. stab(A}) = stab(AP°Y) (as Lie subalgebras of (El\b(X), (,))).
Proof. Tt follows from Theorem B.I.7] thanks to Propositions 2.3 and O

4.3. The stabilizer Lie algebra stab(AY).

Proposition-Definition 4.3.1. For ¢ € Ea(X), we define the Q-algebra derivation
of fig :

(4.8) “’derZ’(l) =ad )+ derZ’(l).

*’Yw(*el

There is a Lie algebra action of (El\b(X), (-,)) on f)g by Q-algebra derivations

- - V.1
(4.9) (Lib(X), (-,-)) — Dergag(V3), ¥ — Yder) .
Proof. The maps ¥ autg’(l) and ¥ — Faut}f,’(l) are Q-group scheme morphisms

from (k — (G(k{({X))),®)) to <k — Autk,alg(f/(;)) The Q-Lie algebra morphism as-
sociated to the former Q-group scheme morphism is ¢ — derz’(l) by the proof of
Proposition-Definition The Lie algebra morphism associated to the latter Q-
group scheme morphism takes ¢ € £ib(X) to the right hand side of (£9]) in view of

221)), therefore is given by v +— “/derzz’(l). It follows that the latter map is a Lie
algebra morphism. O

Proposition-Definition 4.3.2. For vy € EE(X), the derivation VderZ’(l) restricts to

a derivation of the subalgebra Wg denoted vdelr:;v’(l). Moreover, there is a Lie algebra
action of (El\b(X), (,+)) on Wg by Q-algebra derivations

(410) (@(X)’ <.’ >) — Der(@falg(wg)a 1/} — der:;vv(l)
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Proof. One can prove that the assignment k — Autk_alg(WG) is a Q-group scheme with
Lie algebra DerQ_alg(Wg). The map ¥ +— Fauté’(l) is a Q-group scheme morphism
from (k — (G(k((X))),®)) to (k — Autk,alg(f)g)) and, by the proof of Proposition-
Definition E.3.1], its associated Q-Lie algebra is ¢ +— q/delrz’(l). Thanks to Proposition
2.33|(b)l we obtain the following commutative diagram

otV

WG —\P> WG
VG Fauutg’(1> VG

where ¥ € G(k((X))) with k a commutative Q-algebra. Using this diagram for
k = Qle]/(¢?) and ¥ € ker (g(k((X})) — g(@((X}))), one obtains that the derivation

“’derzz’(l) restricts to a derivation on Wg associated to the automorphism Fautgv’(l),

which we denoted “’derzv’(l). Moreover, the diagram states that Q-group scheme

Coutl @
¥

I1aut1£,v’(1) from (k — (G(k({X))),®)) to (k — Autk,alg(WG)>. Therefore, the map

P “/derzzv’(l) from (%(X), (-,9)) to DerQ_alg(Wg) which is the infintesimal version
of the latter Q-group scheme morphism is a Q-Lie algebra morphism. O

morphism provided by ¥ +— defines a Q-group scheme morphism ¥

Using Proposition-Definition £.3.2] one can define the following Lie algebra action of
— . ~ 0\ ©2
(Lib(X), (-, -)) on the space Morg <Wg, <Wg> ):

(4.11) - DV .= <7derww’(1) ®id +id ® vdelrlzv’(l)) oDV - DWo Vderz)\)’(l).

In particular, the stabilizer of Aé\/ is the Lie subalgebra
(4.12)

b AW ¥ € Sib(X) |
stab(Ag) = (aer)V @id +id@ Tder V) o DV = DV o rder] W [
For a commutative Q-algebra k, recall the group Stab(A%)(k) in (Z29). One then has

Proposition 4.3.3. The assignment Stab(AY) : k — Stab(AY)(k) is an affine Q-
group scheme and Lie(Stab(AY)) = stab(AY).

Proof. The first statement is obtained by applying [EF0], Lemma 5.1 where v = Aé\/
and the second one comes from the fact that the Lie algebra action of (£ib(X), (-,-)) on

. ~ 0\ ®2
Morg <Wg, (Wg) > given in (AIT) is the infinitesimal version of the group action of
. A\ ®2
(G(k{((X))),®) on Mork_moqd (Wg, (Wg) > given in ([2.28)), for any Q-algebra k. O

Corollary 4.3.4. stab(AM) C stab(AY) (as Lie subalgebras of (El\b(X), ;).
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Proof. Tt follows from Theorem 2.4.1] thanks to Propositions 3.3 and .23 O
4.4. The stabilizer Lie algebra stab(A}) in Racinet’s formalism.

Proposition-Definition 4.4.1. For ¢ € Ei\b(X), we denote 'dez the derivation of
Q((Y)) given by

(4.13) deg =w lo Vderz\)’(l) ow

where “’derzv’(l) is as in Proposition-Definition [{.53.9 and w : Q((Y)) — Wg is the Q-

algebra isomorphism of Corollary[Z1.8(a) There is a Lie algebra action of (El\b(X), (,+))
on Q((Y)) by derivations given by

(4.14) £ib(X) — Derg_ag (QUY))), ¥ — "d),

Proof. One can prove that the assignment k — Auty_,15(k((Y))) is a Q-group scheme
with Lie algebra Derg_,io(Q((Y'))). Thanks to Proposition-Definition B.2.1] the map
(GkU(X))),®) = Autk_ag(k((Y))), ¥ — Taut) is a morphism of Q-group schemes
from k — (G(k((X))),®) to the latter k — Auti_a,(k((Y))). It is related to the

morphism of Q-group schemes ¥ +— Fauutgv’(l) of Proposition-Definition 2.3.2] by ([B.7]).

It follows that the corresponding Q-Lie algebra morphism takes ¢ € EE(X ) to the
right hand side of (£I3]). The statement then follows from (£.I13]). O

For any ¢ € EE(X ), the derivation Vdi can be expressed in the formalism of [Rac]
as follows

Proposition 4.4.2. For ¢ € El\b(X) and (n,g) € N* x G we have
(4.15) 7 (yng) = av ( (g~ =257ty ()) 2y ) +ay (25~ vu(zg) —ru(z1)el ), )
Proof. The infinitesimal version of the identity in Proposition B.2.3]is given by
7Y (yng) = ay (((=p(@1) + )af ™" + 2l (v (1) = 1))y ).
Identity then follows. O

From Proposition [4.4.T] we define a Lie algebra action of (Et\b(X ), (+,+)) on the space
Morg (Q((Y)), @((Y))?2) by

(4.16) ¢ D= (Vdy ®id+id®7d)) o D — Do Vdy.

In particular, the stabilizer of Ailg is the Lie subalgebra

(4.17)  stab(A?2) .= {w e Lib(X)| ("d} ®@id +id @ 7dY) o Adls = Adls o 'Yd}[} .
For a commutative Q-algebra k, recall the group Stab(A%¥®)(k) in (31I)). One then has

Proposition 4.4.3. The assignment Stab(A¥®) : k — Stab(A8)(k) is an affine Q-
group scheme and Lie(Stab(A™#)) = stab(A%'8).
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Proof. The first statement is a consequence of [EF(], Lemma 5.1 where v = A8 and the
second one comes from the fact that the (EE(X), (-,-))-action on Morg (Q((Y}), Q((Y>>®2>
given in (LI6) is the infinitesimal version of the group action of (G(k{((X))),®) on

Mork _a1g (k((Y>>, k(<Y>>®2) given in (3.10), for any Q-algebra k. O
Corollary 4.4.4. stab(A¥%) = stab(AY) (as Lie subalgebras of (Si6(X), (-,-)).
Proof. It follows from Theorem [B.2.4] thanks to Propositions 4.3l and [£.3.3] O

Finally, in Racinet’s formalism, this translates to:
Corollary 4.4.5. stab(A™°9) C stab(A?'®) (as Lie subalgebras of (EE(X), (,)).

Proof. Tt immediately follows from Corollary [£.3.4] thanks to Corollaries £.2.4] and 441
O
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