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CROSSED PRODUCT INTERPRETATION OF THE DOUBLE

SHUFFLE LIE ALGEBRA ATTACHED TO A FINITE ABELIAN

GROUP

YADDADEN KHALEF

Abstract. Racinet studied the scheme associated with the double shuffle and regu-
larization relations between multiple polylogarithm values at N th roots of unity and
constructed a group scheme attached to the situation; he also showed it to be the
specialization for G = µN of a group scheme DMR

G
0 attached to a finite abelian group

G. Then, Enriquez and Furusho proved that DMR
G
0 can be essentially identified with

the stabilizer of a coproduct element arising in Racinet’s theory with respect to the
action of a group of automorphisms of a free Lie algebra attached to G. We refor-
mulate Racinet’s construction in terms of crossed products. Racinet’s coproduct can

then be identified with a coproduct ∆̂M
G defined on a module M̂G over an algebra

ŴG, which is equipped with its own coproduct ∆̂W
G , and the group action on M̂G

extends to a compatible action of ŴG. We then show that the stabilizer of ∆̂M
G ,

hence DMR
G
0 , is contained in the stabilizer of ∆̂W

G . This yields an explicit group
scheme containing DMR

G
0 , which we also express in the Racinet formalism.
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2 YADDADEN KHALEF

Introduction

A multiple L-value (MLV in short) is a complex number defined by the following
series

(0.1) L(k1,...,kr)(z1, . . . , zr) :=
∑

0<m1<···<mr

zk11 · · · zkrr

mk1
1 · · ·mkr

r

where r, k1, . . . , kr ∈ N∗ and z1, . . . , zr in µN the group of N th roots of unity in C, where
N is an integer ≥ 1. The series (0.1) converges if and only if (kr, zr) 6= (1, 1). These
values have been defined and studied by Goncharov in [Gon98] and [Gon01] and appear
as a generalisation of the so called multiple zeta values which in turn generalise the
special values of the Riemann zeta function. Among the relations satisfied by the MLVs,
our main interest here are the double shuffle and regularisation ones. Understanding
these relations has been greatly improved thanks to Racinet’s work [Rac].

Essentially, he attached to each pair (G, ι) of a finite cyclic group G and a group in-
jection ι : G→ C×, a Q-scheme DMR

ι which associates to each commutative Q-algebra
k, a set DMR

ι(k) that can be decomposed as a disjoint union of sets DMR
ι
λ(k) (λ ∈ k).

For any λ ∈ k, DMR
ι
λ(k) is a subset of the algebra of non-commutative power series

k〈〈X〉〉 over formal non-commutative variables x0 and (xg)g∈G satisfying the following

conditions : (a) group-likeness for the coproduct ∆̂ : k〈〈X〉〉 → k〈〈X〉〉⊗̂2 for which
the elements of X are primitive (b) group-likeness of the image in k〈〈X〉〉/k〈〈X〉〉x0
of a suitable correction of the element for the coproduct ∆̂⋆ : k〈〈X〉〉/k〈〈X〉〉x0 →

(k〈〈X〉〉/k〈〈X〉〉x0)
⊗̂2 (see [Rac], Definition 2.3.1) (c) conditions on the degree 1 and 2

terms of the element. The double shuffle and regularisation relations on MLVs are then
encoded in the statement that a suitable generating series of these values belongs to the
set DMR

ιcan
i2π (C) where ιcan : G = µN → C⋆ is the canonical embedding. Racinet also

proved that for any pair (G, ι), the set DMR
ι
0(k) equipped with the product ⊛ given in

(1.9) is a group that is independent of the choice of the embedding ι, so we denote it
DMR

G
0 (k). The pair G(k〈〈X〉〉),⊛) is a group (see Proposition-Definition 1.2.2) which

contains DMR
G
0 as a subgroup. Thanks to [Rac] Theorem I, the sets DMRιλ(k) have a

torsor structure over (DMR
G
0 (k),⊛). This motivates the study of this group.

In order to improve the understanding of the group (DMR
G
0 (k),⊛), Enriquez and

Furusho related this group with the stabilizer Stab(∆̂⋆)(k) of the coproduct ∆̂⋆ in [EF0]

for an action of (G(k〈〈X〉〉),⊛) on Mork−mod(k〈〈X〉〉/k〈〈X〉〉x0 , (k〈〈X〉〉/k〈〈X〉〉x0)
⊗̂2)

arising from an action of the latter group on k〈〈X〉〉/k〈〈X〉〉x0 (see §1.2.2).
In addition, Racinet’s work also introduced a subalgebra k〈〈Y 〉〉 of k〈〈X〉〉 spanned

by the words ending with xg for some g ∈ G. It is identified, as a k-module, with

k〈〈X〉〉/k〈〈X〉〉x0 and is equipped with a coproduct k〈〈Y 〉〉 → k〈〈Y 〉〉⊗̂2 compatible

with ∆̂⋆. For this reason, the former coproduct has also the same notation in [Rac].
However, we will adopt distinct notation for these two coproducts, by denoting respec-

tively ∆̂alg
⋆ and ∆̂mod

⋆ the coproducts on k〈〈Y 〉〉 and k〈〈X〉〉/k〈〈X〉〉x0 . The situation,
detailed in §1, may be summarised by the diagram

(0.2) k〈〈Y 〉〉 k〈〈X〉〉 k〈〈X〉〉 k〈〈X〉〉/k〈〈X〉〉x0
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where the first arrow is an algebra morphism, the second one is the module struc-
ture of the algebra k〈〈X〉〉 on itself, and the last one is a module morphism. The
three last terms of sequence (0.2) are equipped with compatible actions of the group
(G(k〈〈X〉〉),⊛) while the first and last terms are equipped with the compatible coprod-

ucts ∆̂alg
⋆ and ∆̂mod

⋆ . The stabilizer group construction of [EF0] is then based on the
fourth term of (0.2).

When G = {1}, it was proved in [EF1] (Part 2, §3) that the subalgebra k〈〈Y 〉〉
of k〈〈X〉〉 is stable under the action of (G(k〈〈X〉〉),⊛) on k〈〈X〉〉. One can there-

fore construct the stabilizer group Stab(∆̂alg
⋆ )(k) of ∆̂alg

⋆ with respect to the action

of (G(k〈〈X〉〉),⊛) on Mork−mod(k〈〈Y 〉〉,k〈〈Y 〉〉⊗̂2). By [EF2] (§3.1), one then has the

inclusion Stab(∆̂mod
⋆ )(k) ⊂ Stab(∆̂alg

⋆ )(k).
However, if G 6= {1} one can see that the previous group action on k〈〈X〉〉 no

longer restricts to an action on k〈〈Y 〉〉. This forbids a direct generalisation of the
result of [EF2]. Such a generalisation is obtained in §2 by introducing an algebra
containing k〈〈X〉〉, namely, the crossed product algebra k〈〈X〉〉 ⋊ G (see Definition
2.1.1) and developing a formalism on it parallel to Racinet’s. In this framework, there

is a subalgebra ŴG of V̂G isomorphic to the algebra k〈〈Y 〉〉 (see Proposition 2.1.5)

and a quotient module M̂G of the left regular V̂G-module isomorphic to the module
k〈〈X〉〉/k〈〈X〉〉x0 (see Proposition 2.1.6). The algebra ŴG is equipped with a bialgebra

coproduct ∆̂W
G and the module M̂G is equipped with a compatible coalgebra coproduct

∆̂M
G . The group (G(k〈〈X〉〉),⊛) acts compatibly on the algebra V̂G and on its regular

left module. In contrast to the situation with k〈〈Y 〉〉 ⊂ k〈〈X〉〉, the action on the

algebra V̂G restricts to the subalgebra ŴG, while the action on the left regular V̂G-
module induces an action of the quotient module M̂G. This can be summarised in the
following diagram

(0.3) ŴG V̂G V̂G M̂G

This situation allows us to define two stabilizers : one denoted Stab(∆̂M
G )(k) that is

identified with Stab(∆̂mod
⋆ )(k) and another one denoted Stab(∆̂W

G )(k). One shows that
the latter group is a generalisation of the group with the same notation defined in
[EF2] for G = {1}. One also shows the inclusion (see Theorem 2.4.1, generalising
[EF2], Theorem 3.1)

Stab(∆̂M
G )(k) ⊂ Stab(∆̂W

G )(k).

In §3, we express the group Stab(∆̂W
G )(k) in Racinet’s formalism by working out the

suitable isomorphisms (see Proposition 3.2.3).

In §4, we show that the group functors k 7→ Stab(∆̂M
G )(k) and k 7→ Stab(∆̂W

G )(k)
are affine Q-group subschemes of k 7→ (G(k〈〈X〉〉),⊛) and study their Lie algebras.
We show that these are stabilizer Lie algebras corresponding to the Lie algebra actions
which are the infinitesimal versions of the Q-group scheme morphisms obtained from
the previous actions of the group (G(k〈〈X〉〉),⊛).

Acknowledgements. The author is grateful to Benjamin Enriquez for the helpful
discussions, ideas and careful reading.
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Notation. Throughout this paper, G is a finite abelian group whose product will be
denoted multiplicatively. For a commutative Q-algebra k, a k-algebra A, an element
x ∈ A and an A-module M we consider:

• ℓx : M → M (resp. rx : M → M) to be the k-module endomorphism defined
by m 7→ xm (resp. m 7→ mx) and if x is invertible, then ℓx (resp. rx) is an
automorphism.

• adx : A→ A to be the k-module endomorphism given by adx(a) = [x, a] = xa− ax.
• Adx : A→ A to be the k-algebra automorphism defined by a 7→ xax−1 with x ∈ A×.

1. Racinet’s formalism of the double shuffle theory

In this part, we recall from [Rac] the basic formalism of the double shuffle theory,
the main ingredients being presented in §1.1. In §1.2 and §1.3 we introduce the double
shuffle group and the double shuffle Lie algebra respectively; and we recall from [EF0]
the stabilizer interpretation of both objects.

1.1. Basic objects of Racinet’s formalism. Let k be a commutative Q-algebra.
Let k〈〈X〉〉 be the free noncommutative associative series algebra with unit over the
alphabet X = {x0} ⊔ {xg|g ∈ G}. It is complete graded with deg(x0) = deg(xg) = 1
for g ∈ G. This algebra is endowed with a Hopf algebra structure for the coproduct

∆̂ : k〈〈X〉〉 → k〈〈X〉〉⊗̂2, which is the unique morphism of topological k-algebras given

by ∆̂(xg) = xg ⊗ 1 + 1 ⊗ xg, for any g ∈ G ⊔ {0} ([Rac], §2.2.3). Let then G(k〈〈X〉〉)

be the set of grouplike elements of k〈〈X〉〉 for the coproduct ∆̂. It is a group for the
product of k〈〈X〉〉.

The group G acts on the set X, the permutation tg corresponding to g ∈ G being
given by tg(x0) = x0, tg(xh) = xgh for h ∈ G. This action extends to an action by
k-algebra automorphisms on k〈〈X〉〉 ([Rac], §3.1.1) which will also be denoted g 7→ tg.
One can verify by checking on generators the identity:

(1.1) ∀g ∈ G, ∆̂ ◦ tg = t⊗2
g ◦ ∆̂,

since both sides are given as a composition of k-algebra morphisms. As a consequence
of (1.1), for any g ∈ G, the k-algebra automorphism tg : k〈〈X〉〉 → k〈〈X〉〉 restricts to
a group automorphism tg : G(k〈〈X〉〉) → G(k〈〈X〉〉).

Throughout the document, let us denote k〈〈X〉〉 → k{words in x0,(xg)g∈G}, v 7→
(
(v|w)

)
w

the map such that v =
∑

w(v|w)w.
Each word in X can be uniquely written

(
xn1
0 xg1x

n2
0 xg2 · · · x

nr
0 xgrx

nr+1

0

)
r,n1,...,nr+1∈N
g1,...,gr∈G

.

This family forms a topological k-module basis of k〈〈X〉〉. Let q be the k-module
automorphism of k〈〈X〉〉 given by ([Rac], §2.2.7)

q(xn1−1
0 xg1x

n2−1
0 xg2 · · · x

nr−1
0 xgrx

nr+1−1
0 ) =(1.2)

xn1−1
0 xg1x

n2−1
0 xg2g−1

1
· · · xnr−1

0 xgrg−1
r−1
x
nr+1−1
0

For (n, g) ∈ N∗ ×G, set yn,g := xn−1
0 xg. Let Y := {yn,g|(n, g) ∈ N∗ ×G}. We define

k〈〈Y 〉〉 to be the topological free k-algebra over Y , where for every (n, g) ∈ N∗ × G,
the element yn,g is of degree n. One can show that k〈〈Y 〉〉 is equal to the k-subalgebra
k⊕

⊕
g∈G k〈〈X〉〉xg of k〈〈X〉〉 ([Rac], §2.2.5 and [EF0], §2.2).
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One denotes by qY the k-module automorphism of k〈〈Y 〉〉 given by ([Rac], §2.2.7.)

(1.3) qY (yn1,g1 · · · ynr,gr) := yn1,g1yn2,g2g
−1
1

· · · ynr,grg−1
r−1

Let ∆̂alg
⋆ : k〈〈Y 〉〉 → (k〈〈Y 〉〉)⊗̂2 be the unique topological k-algebra morphism such

that for any (n, g) ∈ N∗ ×G

(1.4) ∆̂alg
⋆ (yn,g) = yn,g ⊗ 1 + 1⊗ yn,g +

n−1∑

k=1
h∈G

yk,h ⊗ yn−k,hg−1.

The map ∆̂alg
⋆ is called the harmonic coproduct ([Rac], §2.3.1) and endows k〈〈Y 〉〉 with

a bialgebra structure. Moreover, one can easily check that the action t on k〈〈X〉〉
restricts to an action on k〈〈Y 〉〉 by k-algebra automorphisms.

The topological k-module quotient k〈〈X〉〉/k〈〈X〉〉x0 is a left k〈〈Y 〉〉-module free of
rank 1. The topological k-module morphism πY : k〈〈X〉〉 → k〈〈X〉〉/k〈〈X〉〉x0 is a
surjective map and its restriction to k〈〈Y 〉〉 is a bijective map. It follows that there is

a topological k-module morphism ∆̂mod
⋆ : k〈〈X〉〉/k〈〈X〉〉x0 → (k〈〈X〉〉/k〈〈X〉〉x0)

⊗̂2

uniquely defined by the condition that the diagram

(1.5)

k〈〈Y 〉〉
(
k〈〈Y 〉〉

)⊗̂2

k〈〈X〉〉/k〈〈X〉〉x0 (k〈〈X〉〉/k〈〈X〉〉x0)
⊗̂2

∆̂alg
⋆

πY (πY )⊗2

∆̂mod
⋆

commutes. This equips k〈〈X〉〉/k〈〈X〉〉x0 with a cocommutative coassociative coalge-
bra structure.

The k-module automorphism q of k〈〈X〉〉 preserves the submodule k〈〈X〉〉x0 and,
therefore, induces a k-module automorphism of k〈〈X〉〉/k〈〈X〉〉x0 denoted q, which
is intertwined with the k-module automorphism qY of k〈〈Y 〉〉 via the identification
k〈〈Y 〉〉 ≃ k〈〈X〉〉/k〈〈X〉〉x0 .

1.2. The double shuffle group DMR
G
0 (k).

1.2.1. The group (G(k〈〈X〉〉),⊛). Let k be a commutative Q-algebra. Recall that the

set of grouplike elements of k〈〈X〉〉 for the coproduct ∆̂ is

G(k〈〈X〉〉) = {Ψ ∈ k〈〈X〉〉× | ∆̂(Ψ) = Ψ⊗Ψ}.

For Ψ ∈ G(k〈〈X〉〉), let autΨ be the topological k-algebra automorphism of k〈〈X〉〉
given by ([EF0], §4.1.3 based on [Rac], §3.1.2)

(1.6) x0 7→ x0 and for g ∈ G,xg 7→ Adtg(Ψ−1)(xg).

Define SΨ to be the topological k-module automorphism of k〈〈X〉〉 given by ([EF0],
(5.15) based on [Rac], (3.1.2.1))

(1.7) SΨ := ℓΨ ◦ autΨ.
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Lemma 1.2.1. For Ψ ∈ G(k〈〈X〉〉), the k-algebra automorphism autΨ is a bialgebra

automorphism of
(
k〈〈X〉〉, ∆̂

)
.

Proof. Both autΨ and ∆̂ are k-algebra automorphisms. So, using Identity (1.1), one
can check on generators that

(1.8) ∆̂ ◦ autΨ = (autΨ)
⊗2 ◦ ∆̂,

which is the wanted result. �

Proposition-Definition 1.2.2 ([Rac], Proposition 3.1.6). The pair (G(k〈〈X〉〉),⊛) is
a group, where for Ψ,Φ ∈ G(k〈〈X〉〉),

(1.9) Ψ⊛ Φ := SΨ(Φ).

A proof of this claim is already available in Racinet’s paper, however, considering
the way it has been stated (using categorical considerations), it might be hard to read.
Thus, we find it useful to rewrite it here. In order to do so, we will need this result:

Lemma 1.2.3. For Ψ,Φ ∈ G(k〈〈X〉〉), we have

autΨ⊛Φ = autΨ ◦ autΦ(1.10)

SΨ⊛Φ = SΨ ◦ SΦ(1.11)

This, in turn, uses the following technical Lemma which can be easily obtained by
checking this identity on generators

Lemma 1.2.4. For Ψ ∈ G(k〈〈X〉〉) and g ∈ G, we have autΨ ◦ tg = tg ◦ autΨ.

Proof of Lemma 1.2.3. It is enough to prove the identity (1.10) on generators. Since
for Ψ ∈ G(k〈〈X〉〉) we have autΨ(x0) = x0, Identity (1.10) is immediately true for x0.
Then, for g ∈ G, we have

autΨ ◦ autΦ(xg) = autΨ ◦ Adtg(Φ−1)(xg) = AdautΨ(tg(Φ−1)) ◦ autΨ(xg)

= AdautΨ(tg(Φ−1)) ◦Adtg(Ψ−1)(xg) = Adtg(autΨ(Φ−1))tg(Ψ−1)(xg)

= Adtg(autΨ(Φ−1)Ψ−1)(xg) = Adtg((Ψ⊛Φ)−1)(xg) = autΨ⊛Φ(xg)

where the fourth equality is obtained by applying Lemma 1.2.4. This concludes the
proof of Identity (1.10). Finally, by using the latter, we get

SΨ ◦ SΦ =ℓΨ ◦ autΨ ◦ ℓΦ ◦ autΦ = ℓΨ ◦ ℓautΨ(Φ) ◦ autΨ ◦ autΦ

=ℓΨautΨ(Φ) ◦ autΨ ◦ autΦ = ℓΨ⊛Φ ◦ autΨ⊛Φ = SΨ⊛Φ,

thus, establishing Identity (1.11). �

Proof of Proposition-Definition 1.2.2. From Lemma 1.2.1, we deduce that ⊛ has its
image in G(k〈〈X〉〉). Next, thanks to Identity 1.11 in Lemma 1.2.3, the product ⊛ is
associative. Indeed, for Ψ,Φ and Λ ∈ G(k〈〈X〉〉), we have

(Ψ⊛ Φ)⊛ Λ = SΨ⊛Φ(Λ) = SΨ (SΦ(Λ)) = SΨ(Φ ⊛ Λ) = Ψ⊛ (Φ⊛ Λ).

Finally, the other group axioms being easy to check, this proves Proposition 1.2.2. �

Corollary 1.2.5.
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(a) There is a group action of (G(k〈〈X〉〉),⊛) on k〈〈X〉〉 by k-algebra automorphisms

(1.12) (G(k〈〈X〉〉),⊛) −→ Autk−alg(k〈〈X〉〉), Ψ 7−→ autΨ

(b) There is a group action of (G(k〈〈X〉〉),⊛) on k〈〈X〉〉 by k-module automorphisms

(1.13) (G(k〈〈X〉〉),⊛) −→ Autk−mod(k〈〈X〉〉), Ψ 7−→ SΨ

Proof. This result is exactly Lemma 1.2.3. �

Next, we aim to give a group action of (G(k〈〈X〉〉),⊛) on the topological k-module
k〈〈X〉〉/k〈〈X〉〉x0 which is compatible with its action S on k〈〈X〉〉. It is important to
notice that this action is not given by compatibility using πY but by the following:

Proposition-Definition 1.2.6 ([EF0], §5.4). For Ψ ∈ G(k〈〈X〉〉), there is a unique
k-module automorphism SYΨ of k〈〈X〉〉/k〈〈X〉〉x0 such that the following diagram

(1.14)

k〈〈X〉〉 k〈〈X〉〉

k〈〈X〉〉/k〈〈X〉〉x0 k〈〈X〉〉/k〈〈X〉〉x0

SΨ

q◦πY q◦πY

SYΨ

commutes.

Corollary 1.2.7. There is a group action of (G(k〈〈X〉〉),⊛) on k〈〈X〉〉/k〈〈X〉〉x0 by
topological k-module automorphisms

(1.15) (G(k〈〈X〉〉),⊛) −→ Autk−mod (k〈〈X〉〉/k〈〈X〉〉x0) , Ψ 7−→ SYΨ

Proof. We have

SYΨ ◦ SYΦ ◦ q ◦ πY = SYΨ ◦ q ◦ πY ◦ SΦ = q ◦ πY ◦ SΨ ◦ SΦ = q ◦ πY ◦ SΨ⊛Φ,

and, by uniqueness of the k-module automorphism SYΨ⊛Φ, we obtain

SYΨ ◦ SYΦ = SYΨ⊛Φ.

�

Let Γ : k〈〈X〉〉 → k[[x]]×,Ψ 7→ ΓΨ the function given by ([Rac], (3.2.1.2))

(1.16) ΓΨ(x) := exp


∑

n≥2

(−1)n−1

n
(Ψ|xn−1

0 x1)x
n


 .

It satisfies the following property:

Lemma 1.2.8. For Ψ,Φ ∈ G(k〈〈X〉〉), we have ΓΨ⊛Φ = ΓΨΓΦ.

Proof. Lemma 4.12 in [EF0] says that the map (−|xn−1
0 x1) : (G(k〈〈X〉〉),⊛) → (k,+)

is a group morphism, for any n ∈ N∗. The result is then obtained by straightforward
computations. �

We then define the following topological k-module automorphism of k〈〈X〉〉/k〈〈X〉〉x0 :

(1.17) ΓSYΨ := ℓΓ−1
Ψ (x1)

◦ SYΨ .
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Corollary 1.2.9. There is a group action of (G(k〈〈X〉〉),⊛) on k〈〈X〉〉/k〈〈X〉〉x0 by
topological k-module automorphisms

(1.18) (G(k〈〈X〉〉),⊛) −→ Autk−mod (k〈〈X〉〉/k〈〈X〉〉x0) , Ψ 7−→ ΓSYΨ

Proof. Follows from Corollary 1.2.7 and Lemma 1.2.8. �

The above automorphism is related to an automorphism introduced in [EF0].

Proposition 1.2.10. For any Ψ ∈ G(k〈〈X〉〉), the k-module automorphism ΓSYΨ is

equal to the k-module automorphism SYΘ(Ψ) where Θ : (G(k〈〈X〉〉),⊛) → ((k〈〈X〉〉)× ,⊛)1

is the group morphism given by ([EF0], Proposition 4.13)

(1.19) Θ(Ψ) := Γ−1
Ψ (x1)Ψ exp(−(Ψ|x0)x0).

Proof. Let Ψ ∈ G(k〈〈X〉〉) and v ∈ k〈〈X〉〉. First, we have

SΘ(Ψ)(v) = Θ(Ψ)autΘ(Ψ)(v) =
(
Γ−1
Ψ (x1)Ψ exp(−(Ψ|x0)x0)

)
autΘ(Ψ)(v)

Moreover, one can check on generators that

autΘ(Ψ) = Adexp((Ψ|x0)x0) ◦ autΨ.

Therefore, one obtains

SΘ(Ψ)(v) = Γ−1
Ψ (x1)ΨautΨ(v) exp(−(Ψ|x0)x0) = Γ−1

Ψ (x1)SΨ(v) exp(−(Ψ|x0)x0)

Consequently,

ΓSYΨ
(
q ◦ πY (v)

)
=Γ−1

Ψ (x1)S
Y
Ψ

(
q ◦ πY (v)

)
= Γ−1

Ψ (x1)
(
q ◦ πY (SΨ(v))

)

=q ◦ πY
(
Γ−1
Ψ (x1)SΨ(v)

)
= q ◦ πY

(
SΘ(Ψ)(v)

)

This establishes the identity ΓSYΨ = SYΘ(Ψ), thanks to Proposition-Definition 1.2.6. �

1.2.2. The group (DMR
G
0 (k),⊛). Let k be a commutative Q-algebra. For Ψ ∈ G(k〈〈X〉〉),

set Ψ⋆ := q ◦ πY
(
Γ−1
Ψ (x1)Ψ

)
∈ k〈〈X〉〉/k〈〈X〉〉x0 .

Proposition-Definition 1.2.11 ([Rac], Definition 3.2.1 and Theorem I). If G is a
cyclic group, we define2 DMR

G
0 (k)

3 to be the set of Ψ ∈ G(k〈〈X〉〉) such that :

i. (Ψ|x0) = (Ψ|x1) = 0;

ii. ∆̂mod
⋆ (Ψ⋆) = Ψ⋆ ⊗Ψ⋆;

iii. If |G| ∈ {1, 2}, (Ψ|x0x1) = 0;
iv. If |G| ≥ 3,∀g ∈ G,

(
Ψ|xg − xg−1

)
= 0.

The pair (DMR
G
0 (k),⊛) is a subgroup of (G(k〈〈X〉〉),⊛).

1The product ⊛ extends to a product on k〈〈X〉〉×. See [EF0], Lemma 4.1 and [Rac], §3.1.2.
2The notation DMR is for ”Double Mélange et Régularisation” which is French for ”Double Shuffle

and Regularisation”.
3In [Rac], Definition 3.2.1 gives sets DMR

ι
λ(k) where λ ∈ k and ι : G → C∗ a group embedding

(therefore G is cyclic). If |G| ∈ {1, 2}, the embedding ι is unique; and if |G| ≥ 3, for λ = 0, condition
(iv) does not depend of the choice of ι. For this reason, the embedding ι does not appear in our
notation.
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Thanks to Corollary 1.2.9, there is a group action of (G(k〈〈X〉〉),⊛) on the k-module

Mork−mod

(
k〈〈X〉〉/k〈〈X〉〉x0 , (k〈〈X〉〉/k〈〈X〉〉x0)

⊗̂2
)
via :

(1.20) Ψ ·D :=
((

ΓSYΨ
)⊗2
)
◦D ◦ (ΓSYΨ )−1.

In particular, the stabilizer of D = ∆̂mod
⋆ is the subgroup ([EF0], §5.4)

(1.21) Stab(∆̂mod
⋆ )(k) :=

{
Ψ ∈ G(k〈〈X〉〉) |

(
ΓSYΨ

)⊗2
◦ ∆̂mod

⋆ = ∆̂mod
⋆ ◦ ΓSYΨ

}
.

Proposition 1.2.12 ([EF0], Theorem 1.2). If G is a cylic group, we have

(1.22) DMR
G
0 (k) = {Ψ ∈ Stab(∆̂mod

⋆ )(k) | (Ψ|x0) = (Ψ|x1) = 0}.

Since the condition (Ψ|x0) = (Ψ|x1) = 0 defines a subgroup of (G(k〈〈X〉〉),⊛), Theorem
1.2.12 then identifies DMR

G
0 (k) with the intersection of two subgroups of (G(k〈〈X〉〉),⊛).

1.2.3. An affine Q-group scheme structure. Recall that an affine Q-group scheme is a
functor G from the category of commutative Q-algebras to the category of groups for
which is representable by a Hopf Q-algebra (see, for example, [Wat], §1.2).

Proposition 1.2.13. The following assignments are affine Q-group schemes:

(a) k 7→ (G(k〈〈X〉〉),⊛);
(b) DMR

G
0 : k 7→ (DMR

G
0 (k),⊛);

(c) Stab(∆̂mod
⋆ ) : k 7→ Stab(∆̂mod

⋆ )(k).

Proof. (a) See [EF0], Lemma 4.6; (b) See [Rac], Theorem I; (c) See [EF0], Lemma
5.1. �

Therefore, Proposition 1.2.12 provides an inclusion of affine Q-group schemes

(1.23) DMR
G
0 ⊂ Stab(∆̂mod

⋆ ) ⊂

(
k 7→ (G(k〈〈X〉〉),⊛)

)

1.3. The double shuffle Lie algebra dmr
G
0 . Recall from Theorem 12.2 in [Wat] that

there exists a functor Lie from the category of affine Q-group schemes to the category

of Q-Lie algebras such that Lie(G) = ker
(
G
(
Q[ǫ]/(ǫ2)

)
→ G(Q)

)
. In this section, we

provide an explicit formulation of the Lie algebras obtained by applying the functor
Lie to the inclusions (1.23).

1.3.1. The Lie algebra
(
L̂ib(X), 〈·, ·〉

)
. Let L̂ib(X) be the free complete graded Q-

Lie algebra over the alphabet X. One can identify the Q-algebra Q〈〈X〉〉 with the

enveloping algebra of L̂ib(X) ([Rac], §2.2.3). Therefore, L̂ib(X) is identified with the

Lie subalgebra of primitive elements in Q〈〈X〉〉 for the coproduct ∆̂. Namely,

(1.24) L̂ib(X) ≃ {ψ ∈ Q〈〈X〉〉 | ∆̂(ψ) = ψ ⊗ 1 + 1⊗ ψ}.

For ψ ∈ L̂ib(X), let dψ be the derivation of Q〈〈X〉〉 given by ([Rac], §3.1.12.2)

(1.25) dψ(x0) = 0, and for g ∈ G, dψ(xg) = [xg, tg(ψ)],
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and let sψ be the Q-linear endomorphism of Q〈〈X〉〉 given by ([Rac], §3.1.12.1)

(1.26) sψ := ℓψ + dψ.

We then define a Lie algebra bracket on L̂ib(X) as follows ([Rac], §3.1.10.2):

(1.27) ∀ψ1, ψ2 ∈ L̂ib(X), 〈ψ1, ψ2〉 := sψ1(ψ2)− sψ2(ψ1).

1.3.2. The Lie algebra
(
dmr

G
0 , 〈·, ·〉

)
. Let us define γ : Q〈〈X〉〉 → Q[[x]]; ψ 7→ γψ, where

(1.28) γψ(x) :=
∑

n∈N∗

(−1)n+1

n

(
ψ|xn−1

0 x1
)
xn,

and for ψ ∈ Q〈〈X〉〉, set ψ⋆ := q ◦ πY (−γψ(x1) + ψ) ∈ Q〈〈X〉〉/Q〈〈X〉〉x0 .

Proposition-Definition 1.3.1 ([Rac], Definitions 3.3.1, 3.3.8 and Proposition 4.A.i)).

The set dmr
G
0 of elements ψ ∈ L̂ib(X) such that

i. (ψ|x0) = (ψ|x1) = 0; ii. ∆̂mod
⋆ (ψ⋆) = ψ⋆ ⊗ 1 + 1⊗ ψ⋆;

iii.
(
ψ⋆|x

n−1
0 xg

)
= (−1)n−1

(
ψ⋆|x

n−1
0 xg−1

)
for (n, g) ∈ N∗ ×G;

is a complete graded Lie subalgebra of
(
L̂ib(X), 〈·, ·〉

)
.

Remark. According to [Rac], Propositions 3.3.3 and 3.3.7, it is enough to have (iii)
in these cases: {

for (n, g) = (2, 1) if |G| = 2

for n = 1 and any g ∈ G if |G| ≥ 3

since this identity is always true for all the other cases.

1.3.3. Relation of dmr
G
0 with a stabilizer Lie algebra.

Proposition 1.3.2 ([Rac], (3.1.9.2)). There exists a Lie algebra action of (L̂ib(X), 〈·, ·〉)
by Q-linear endomorphisms on Q〈〈X〉〉 given by

(1.29) (L̂ib(X), 〈·, ·〉) −→ EndQ(Q〈〈X〉〉), ψ 7−→ sψ.

Proposition-Definition 1.3.3 ([Rac], §4.1.1 and [EF0], Lemma 2.2). For ψ ∈ L̂ib(X),
there exists a unique Q-linear endomorphism4 sYψ of Q〈〈X〉〉/Q〈〈X〉〉x0 such that the
following diagram

Q〈〈X〉〉 Q〈〈X〉〉

Q〈〈X〉〉/Q〈〈X〉〉x0 Q〈〈X〉〉/Q〈〈X〉〉x0

sψ

q◦πY q◦πY

sYψ

commutes. Moreover, there is a Lie algebra action of (L̂ib(X), 〈·, ·〉) by Q-linear endor-
morphisms on Q〈〈X〉〉/Q〈〈X〉〉x0 given by

(1.30)
(
L̂ib(X), 〈·, ·〉

)
−→ EndQ (Q〈〈X〉〉/Q〈〈X〉〉x0) , ψ 7−→ sYψ .

4Racinet defined this Q-linear endomorphism on Q〈〈Y 〉〉. Even if we proceeded differently, we chose
to keep the notation for consistency.
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For ψ ∈ L̂ib(X), we consider the following Q-linear endomorphism onQ〈〈X〉〉/Q〈〈X〉〉x0

(1.31) γsYψ := ℓ−γψ(x1) + sYψ .

Lemma 1.3.4. For any ψ ∈ L̂ib(X), the Q-linear endomorphism γsYψ is equal to sYθ(ψ)

where θ : (L̂ib(X), 〈·, ·〉) → (Q〈〈X〉〉, 〈·, ·〉) is the Lie algebra morphism5 given by ([EF0],
Proposition 2.5)

(1.32) θ(ψ) := −γψ(x1) + ψ − (ψ|x0)x0

Proof. Let ψ ∈ L̂ib(X) and a ∈ Q〈〈X〉〉. First, we have

sθ(ψ)(a) = θ(ψ)a+ dθ(ψ)(a) = (−γψ(x1) + ψ − (ψ|x0)x0)a+ dθ(ψ)(a)

Moreover, one can check on generators that

dθ(ψ) = ad(ψ|x0)x0 + dψ,

Therefore, one obtains

sθ(ψ)(a) =(−γψ(x1) + ψ − (ψ|x0)x0)a+ ad(ψ|x0)x0(a) + dψ(a)

=− γψ(x1)a+ sψ(a)− (ψ|x0)ax0.

Consequently,
γsYψ (q ◦ πY (a)) =− γψ(x1)

(
q ◦ πY (a)

)
+ sYψ

(
q ◦ πY (a)

)

=q ◦ πY

(
− γψ(x1)a

)
+ q ◦ πY

(
sψ(a)

)

=q ◦ πY
(
− γψ(x1)a+ sψ(a)

)
= q ◦ πY

(
sθ(ψ)(a)

)
.

This establishes the identity γsYψ = sYθ(ψ), thanks to Proposition-Definition 1.3.3. �

Proposition 1.3.5. There is a Lie algebra action of (L̂ib(X), 〈·, ·〉) by Q-linear endo-
morphisms on Q〈〈X〉〉/Q〈〈X〉〉x0 by

(1.33)
(
L̂ib(X), 〈·, ·〉

)
−→ EndQ (Q〈〈X〉〉/Q〈〈X〉〉x0) , ψ 7−→ γsψ.

Proof. Thanks to [EF0], §2.5, the map ψ 7→ sθ(ψ) is a Lie algebra action of (L̂ib(X), 〈·, ·〉)
on Q〈〈X〉〉/Q〈〈X〉〉x0 . The result then follows from Lemma 1.3.4. �

The space MorQ

(
Q〈〈X〉〉/Q〈〈X〉〉x0 , (Q〈〈X〉〉/Q〈〈X〉〉x0)

⊗̂2
)
is then equipped with

an action of the Lie algebra (L̂ib(X), 〈·, ·〉) given by ([EF0], §2.5)

(1.34) ψ ·D :=
(
γsYψ ⊗ id + id⊗ γsYψ

)
◦D −D ◦ γsYψ ,

where ψ ∈ L̂ib(X) and D ∈ MorQ

(
Q〈〈X〉〉/Q〈〈X〉〉x0 , (Q〈〈X〉〉/Q〈〈X〉〉x0)

⊗̂2
)
.

The stabilizer Lie algebra stab(∆̂mod
⋆ ) of D = ∆̂mod

⋆ is then the Lie subalgebra of

(L̂ib(X), 〈·, ·〉) given by ([EF0], §2.5)

(1.35) stab(∆̂mod
⋆ ) := {ψ ∈ L̂ib(X) | (γsYψ ⊗ id + id⊗ γsYψ ) ◦ ∆̂

mod
⋆ = ∆̂mod

⋆ ◦ γsYψ }.

It is related to the Lie algebra dmr
G
0 as follows:

5One can equip Q〈〈X〉〉 with the bracket 〈·, ·〉 as described in (1.27).
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Proposition 1.3.6. dmr
G
0 ⊂ stab(∆̂mod

⋆ ) (as Lie subalgebras of (L̂ib(X), 〈·, ·〉)).

Proof. Thanks to Lemma 1.3.4, the stabilizer Lie algebra stab(∆̂mod
⋆ ) is identified with

the stabilizer Lie algebra given in [EF0]. Therefore the wanted inclusion is stated in
Corollary 3.11 of [EF0] (dmr

G
0 being denoted dmr0 in [EF0]). �

1.3.4. Exponential maps. Recall the affine Q-group schemes from Proposition 1.2.13.
We have :

Proposition 1.3.7. (a) Lie
(
k 7→ (G(k〈〈X〉〉),⊛)

)
=
(
L̂ib(X), 〈·, ·〉

)
;

(b) Lie(DMR
G
0 ,⊛) =

(
dmr

G
0 , 〈·, ·〉

)
, where G is a cyclic group;

(c) Lie(Stab(∆̂mod
⋆ ),⊛) =

(
stab(∆̂mod

⋆ ), 〈·, ·〉
)
.

Proof. (a) See [EF0], §4.1.4; (b) See [Rac], §3.3.8; (c) See [EF0], (5.12). �

Let k be a commutative Q-algebra. Let us denote L̂ibk(X) := L̂ib(X)⊗̂k. Let

cbh〈·,·〉 : L̂ibk(X) × L̂ibk(X) → L̂ibk(X) be the map defined by cbh〈·,·〉(ψ, φ) :=

morψ,φ(cbh), where cbh in L̂ibQ(a, b) is the Campbell-Baker-Hausdorff series ([EF0],
§4.1.2) cbh = log(exp(a) exp(b)) with log : 1 + Q〈〈a, b〉〉 → Q〈〈a, b〉〉0 and morψ,φ is

the Lie algebra morphism L̂ibQ(a, b) → (L̂ibk(X), 〈·, ·〉), a 7→ ψ, b 7→ φ. We then define

expk⊛ : L̂ibk(X) → G(k〈〈X〉〉) to be the exponential map; it intertwines cbh〈·,·〉 and
⊛. The following proposition recalls from [Rac], §3.1.8 and [DeGo], Remark 5.14, the
explicit form of expk⊛ as well as gives a proof of this statement.

Proposition 1.3.8. For a commutative Q-algebra k and ψ ∈ L̂ibk(X), we have

(a) The exponential map expk⊛ : L̂ibk(X) → G(k〈〈X〉〉) is a bijection;

(b) Sexpk
⊛
(ψ) = exp(sψ); where ψ 7→ sψ is the map L̂ibk(X) → Endk−mod(k〈〈X〉〉)

obtained from the map L̂ib(X) → EndQ(Q〈〈X〉〉) in (1.26) by tensoring with k
and exp is the usual exponential of an endomorphism;

(c) expk⊛(ψ) = exp(sψ)(1).

Proof. (a) See [EF0] §4.1.4 and §4.1.5;
(b) The assignment k 7→ Autk−mod(k〈〈X〉〉) is an affine Q-group scheme and the

map G(k〈〈X〉〉) → Autk−mod(k〈〈X〉〉),Ψ 7→ SΨ defines an affine Q-groupe scheme
morphism from k 7→ G(k〈〈X〉〉) to k 7→ Autk−mod(k〈〈X〉〉). The associated Q-Lie

algebra morphism is L̂ib(X) → EndQ(Q〈〈X〉〉), ψ 7→ sψ. As a consequence, for

any ψ ∈ L̂ibk(X), Sexpk
⊛
(ψ) = exp(sψ).

(c) Follows by applying the latter equality to 1, using the identity SΨ(1) = Ψ for any
Ψ ∈ G(k〈〈X〉〉).

�

To conclude this part, let us notice that the bijection of the map exp⊛ : L̂ibk(X) →
G(k〈〈X〉〉) implies that we have an identification between the group actions defined in
§1.2 with the exponential of the Lie algebra actions of the current section.
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2. A crossed product formulation of the double shuffle theory

We construct a crossed product version of the double shuffle formalism. The relevant
algebras and modules are introduced in §2.1 : (a) an algebra V̂G defined by generators
and relations, which is then identified with a crossed product algebra involving Racinet’s
formal series algebra k〈〈X〉〉; (b) a bialgebra (ŴG, ∆̂

W
G ) isomorphic to the bialgebra

(k〈〈Y 〉〉, ∆̂alg
⋆ ), where ŴG is a subalgebra of V̂G; (c) a coalgebra (M̂G, ∆̂

M
G ) isomor-

phic to the coalgebra (k〈〈X〉〉/k〈〈X〉〉x0 , ∆̂
mod
⋆ ), where M̂G has a V̂G-module structure

inducing a free rank one ŴG-module structure on it, compatible with the coproducts
∆̂W
G and ∆̂M

G . In §2.2 and §2.3, we construct actions of the group (G(k〈〈X〉〉),⊛) on
these objects by algebra and module automorphisms. This leads us in §2.4 to define
the stabilizer groups of the coproducts ∆̂W

G and ∆̂M
G and show in Theorem 2.4.1 that

the stabilizer of the latter is included in the stabilizer of the former.

2.1. The algebra V̂G, the bialgebra (ŴG, ∆̂
W
G ) and the coalgebra (M̂G, ∆̂

M
G ).

2.1.1. The algebras V̂G and ŴG and the module M̂G. Let V̂k
G (or simply V̂G if there is

ambiguity) the complete graded topological k-algebra generated by6 {e0, e1}⊔G where
e0 and e1 are of degree 1 and elements g ∈ G are of degree 0 satisfying the relations:

(i) g × h = gh; (ii) 1 = 1G; (iii) g × e0 = e0 × g;

for any g, h ∈ G; where “×” is the algebra multiplication which we will no longer denote
if there is no ambiguity.

Set Ŵk
G := k⊕ V̂Ge1 (or simply ŴG if there is ambiguity). It is a graded topological

k-subalgebra of V̂G. Next, the quotient M̂
k
G := V̂G

/(
V̂Ge0 +

∑
g∈G\{1} V̂G(g − 1)

)
(or

simply M̂G if there is ambiguity) is a topological k-module. It is also a topological V̂G-

module and, by restriction, a topological ŴG-module. Let 1M be the class of 1 ∈ V̂G
in M̂G. The map − · 1M : V̂G → M̂G is a surjective topological k-module morphism
whose kernel is V̂Ge0 +

∑
g∈G\{1} V̂G(g − 1).

2.1.2. The algebra V̂G as a crossed product. First, let us introduce the basic material
about the crossed product of an algebra by a group acting by algebra automorphisms.

Definition 2.1.1. Let A be a k-algebra such that the group G acts on A by k-algebra
automorphisms. Let us denote G × A ∋ (g, a) 7→ ag ∈ A this action. The crossed
product algebra of the k-algebra A by the group G denoted A ⋊ G is the k-algebra
(A⊗ kG, ∗) where ∗ is the product given by

(2.1)
∑

g∈G

(ag ⊗ g) ∗
∑

h∈G

(bh ⊗ h) :=
∑

k∈G


 ∑

g,h∈G|gh=k

ag b
g
h


⊗ k,

for ag, bg ∈ A with g ∈ G ([Bou], Chapter 3, Page 180, Exercise 11).

6The notation e0 and e1 is inspired by [EF1] which in turn is inspired by [DT].
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Proposition 2.1.2 (Universal property of the crossed product algebra). For any k-
algebra B, there is a natural bijection between the set Mork−alg(A⋊G,B) and the set
of pairs (f, τ) ∈ Mork−alg(A,B)×Morgrp(G,B

×) such that f(ag) = τ(g)f(a)τ(g)−1.

Proof. Indeed, given a k-algebra morphism β : A⋊G→ B we consider:

• The k-algebra morphism f : A→ B given for any a ∈ A by f(a) = β(a⊗ 1);
• The group morphism τ : G→ B× given for any g ∈ G by τ(g) = β(1 ⊗ g).

These morphisms verify:

τ(g)f(a)τ(g−1) =β(1⊗ g)β(a ⊗ 1)β(1 ⊗ g−1) = β((1 ⊗ g) ∗ (a⊗ 1) ∗ (1⊗ g−1))

=β((ag ⊗ g) ∗ (1⊗ g−1)) = β(ag ⊗ 1) = f(ag).

This shows that the map β 7→ (f, τ) is well defined. Now let us define a converse map
in order to get a bijection. Given any pair (f, τ) of morphisms satisfying the conditions
of the proposition, we set β : a ⊗ g 7→ f(a)τ(g) for any a ⊗ g ∈ A ⋊ G. This is a
k-algebra morphism. Indeed, for any a⊗ g and b⊗ h ∈ A⋊G

β((a⊗ g) ∗ (b⊗ h)) =β(abg ⊗ gh) = f(abg)τ(gh) = f(a)f(bg)τ(g)τ(h)

=f(a)τ(g)f(b)τ(g)−1τ(g)τ(h) = f(a)τ(g)f(b)τ(h)

=β(a⊗ g)β(b ⊗ h).

Thus the map (f, τ) → β is also well defined. Finally, one can easily check that the
composition of the two maps on both sides gives the identity. �

Now, recall that g 7→ tg defines an action of G on k〈〈X〉〉 by k-algebra automorphisms
([Rac], §3.1.1). We can then consider the crossed product algebra k〈〈X〉〉 ⋊G for this
action.

Proposition 2.1.3.

(a) There is a unique k-algebra morphism V̂G
α
→ k〈〈X〉〉 ⋊G such that e0 7→ x0 ⊗ 1,

e1 7→ −x1 ⊗ 1 and g 7→ 1⊗ g.

(b) There is a unique k-algebra morphism k〈〈X〉〉 ⋊ G
β
→ V̂G such that x0 ⊗ 1 7→ e0

and for g ∈ G, xg ⊗ 1 7→ −ge1g
−1 and 1⊗ g 7→ g.

(c) The morphisms α and β given respectively in (a) and (b) are isomorphisms which
are inverse of one another.

Proof.

(a) We verify that the images by the morphism α of the generators of V̂G satisfy the

relations of V̂G.
• α(1G) = 1⊗ 1G = α(1);
• For g, h ∈ G, α(g) ∗ α(h) = (1⊗ g) ∗ (1⊗ h) = 1 tg(1) ⊗ gh = 1⊗ gh = α(gh).
• For g ∈ G,α(g) ∗α(e0) = (1⊗ g) ∗ (x0 ⊗ 1) = 1 tg(x0)⊗ g = x0⊗ g. On the other
hand, we have α(e0) ∗ α(g) = (x0 ⊗ 1) ∗ (1 ⊗ g) = x0 t1(1) ⊗ g = x0 ⊗ g. Thus
α(g) ∗ α(e0) = α(e0) ∗ α(g).

(b) First, since for any g ∈ G, the element −ge1g
−1 is of degree 1, there is a unique

k-algebra morphism f : k〈〈X〉〉 → V̂G such that x0 7→ e0, xg 7→ −ge1g
−1. Second,

there is a unique group morphism τ : G→ V̂×
G given by g 7→ g. Next, for any g ∈ G,
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the maps k〈〈X〉〉 → V̂G defined by a 7→ f(tg(a)) and a 7→ τ(g)f(a)τ(g)−1 are k-
algebra morphisms that are equal by restriction on generators xh (h ∈ {0} ⊔G) of
k〈〈X〉〉. Indeed,

τ(g)f(x0)τ(g)
−1 = ge0g

−1 = e0gg
−1 = e0 = f(x0) = f(tg(x0))

and for h ∈ G,

τ(g)f(xh)τ(g)
−1 = g(−he1h

−1)g−1 = ghe1(gh)
−1 = f(xgh) = f(tg(xh)).

We then have for any g ∈ G and any a ∈ k〈〈X〉〉, f(tg(a)) = τ(g)f(a)τ(g)−1.
Finally, according to the universal property of crossed products, the pair (f, τ)

gives a unique k-algebra morphism β : k〈〈X〉〉 ⋊ G → V̂G, a ⊗ g 7→ f(a)τ(g)
which verifies β(x0 ⊗ 1) = f(x0)τ(1) = e0, β(xg ⊗ 1) = f(xg)τ(1) = −ge1g

−1 and
β(1⊗ g) = f(1)τ(g) = g, for g ∈ G.

(c) It is enough to show that the compositions of α and β gives the identity. First,

since β ◦ α : V̂G → V̂G, it is enough to compute it on generators. We have
e0 7→ x0 ⊗ 1 7→ e0, e1 7→ −x1 ⊗ 1 7→ e1 and g 7→ 1⊗ g 7→ g. Thus β ◦ α = idV̂G .

For the converse, we show that α ◦ β ∈ Mork−alg (k〈〈X〉〉 ⋊G,k〈〈X〉〉 ⋊G) and
the identity of k〈〈X〉〉 ⋊G have the same image via the bijection of the universal
property of crossed products. The image of the identity is the pair

fid : a 7→ a⊗ 1 and τid(g) = 1⊗ g

Next, let us compute the image of α ◦ β. The k-algebra morphism f is given for
any a ∈ k〈〈X〉〉 by

f(a) = α ◦ β(a⊗ 1)

Since it is a k-algebra morphism, it is enough to determine it on xg, g ∈ {0} ⊔G.
We have

f(x0) = α ◦ β(x0 ⊗ 1) = α(e0) = x0 ⊗ 1

and for g ∈ G,

f(xg) =α ◦ β(xg ⊗ 1) = α(−ge1g
−1) = −α(g) ∗ α(e1) ∗ α(g

−1)

=− (1⊗ g) ∗ (−x1 ⊗ 1) ∗ (1⊗ g−1) = (tg(x1)⊗ g) ∗ (1⊗ g−1) = xg ⊗ 1.

We then deduce that for any a ∈ k〈〈X〉〉, f(a) = a⊗1. Next, the group morphism
τ : G→ (k〈〈X〉〉 ⋊G)× is given for any g ∈ G by

τ(g) = α ◦ β(1⊗ g) = α(g) = 1⊗ g.

Finally, by uniqueness of the images we conclude that α ◦ β = idk〈〈X〉〉⋊G.

�

2.1.3. The bialgebra (ŴG, ∆̂
W
G ) and the coalgebra (M̂G, ∆̂

M
G ).

Proposition 2.1.4. The family
(
en1−1
0 g1e1 · · · e

nr−1
0 gre1e

nr+1−1
0 gr+1

)
r∈N,n1,...,nr+1∈N∗,

g1,...,gr+1∈G

is a basis of the k-module V̂G.
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Proof. Since the family
(
(−1)rxn1−1

0 xg1 · · · x
nr−1
0 xg1···grx

nr+1−1
0

)
r∈N,n1,...,nr+1∈N∗

g1,...,gr∈G

is a ba-

sis of the k-module k〈〈X〉〉, it follows that the family
(
(−1)rxn1−1

0 xg1 · · · x
nr−1
0 xg1···grx

nr+1−1
0 ⊗ g1 · · · grgr+1

)
r,n1,...,nr+1∈N
g1,...,gr+1∈G

is a basis of the k-module k〈〈X〉〉 ⊗ kG. Thus, its image by the bijection β (given in

Proposition 2.1.3 (b)) is a basis of V̂G. Moreover, for r ∈ N, n1, . . . , nr+1 ∈ N∗ and
g1, . . . , gr+1 ∈ G, we have

xn1−1
0 xg1 · · · x

nr−1
0 xg1···grx

nr+1−1
0 ⊗ g1 · · · grgr+1 =

(xn1−1
0 ⊗ 1) ∗ (xg1 ⊗ 1) ∗ · · · ∗ (xnr−1

0 ⊗ 1) ∗ (xg1···gr ⊗ 1)∗

(x
nr+1−1
0 ⊗ 1) ∗ (1⊗ g1) ∗ · · · ∗ (1⊗ gr) ∗ (1⊗ gr+1)

Then

β((−1)rxn1−1
0 xg1 · · · x

nr−1
0 xg1···grx

nr+1−1
0 ⊗ g1 · · · grgr+1)(2.2)

= (−1)rβ(xn1−1
0 ⊗ 1)β(xg1 ⊗ 1) · · · β(xnr−1

0 ⊗ 1)β(xg1···gr ⊗ 1)

β(x
nr+1−1
0 ⊗ 1)β(1 ⊗ g1) · · · β(1⊗ gr)β(1 ⊗ gr+1)

= en1−1
0 g1e1g

−1
1 · · · enr−1

0 g1 · · · gre1g
−1
1 · · · g−1

r e
nr+1−1
0 g1 · · · grgr+1

= en1−1
0 g1e1 · · · e

nr−1
0 g−1

1 · · · g−1
r−1g1 · · · gre1e

nr+1−1
0 g−1

1 · · · g−1
r g1 · · · grgr+1

= en1−1
0 g1e1 · · · e

nr−1
0 gre1e

nr+1−1
0 gr+1

This gives us the wanted result. �

Proposition 2.1.5.

(a) The family {1}∪
(
en1−1
0 g1e1 · · · e

nr−1
0 gre1e

nr+1−1
0 gr+1e1

)
r∈N,n1,...,nr,nr+1∈N∗,

g1,...,gr,gr+1∈G

is a ba-

sis of the k-module ŴG.
(b) The k-subalgebra ŴG is freely generated by the family

Z = {zn,g := −en−1
0 ge1 | (n, g) ∈ N∗ ×G}.

Proof.

(a) First, ŴG is the image of the k-module morphism k⊕ V̂G → V̂G, (λ, v) 7→ λ+ ve1.
Second, according to Proposition 2.1.4, the family

(1, 0),
(
0, en1−1

0 g1e1 · · · e
nr−1
0 gre1e

nr+1−1
0 gr+1

)
r∈N,n1,...,nr,nr+1∈N∗,

g1,...,gr,gr+1∈G

is a basis of the k-module k ⊕ V̂G. Moreover, the image of this basis by this
k-module morphism is the family

{1} ∪
(
en1−1
0 g1e1 · · · e

nr−1
0 gre1e

nr+1−1
0 gr+1e1

)
r∈N,n1,...,nr,nr+1∈N∗,

g1,...,gr,gr+1∈G

which is free since it is contained in a basis of the target. This implies that this
family is a basis of the image of the previous morphism which is ŴG.
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(b) Let k〈〈Z〉〉 be the free algebra over the letters zn,g, (n ∈ N∗, g ∈ G), which we

view as free variables. Then there is a unique k-algebra morphism k〈〈Z〉〉 → ŴG

given by zn,g 7→ −en−1
0 ge1. Let us show that it is an isomorphism:

The free k-module k〈〈Z〉〉 has basis {1}∪ (zn1 ,g1 · · · znr+1,gr+1)r∈N,n1,...,nr+1∈N∗

g1,...,gr+1∈G

and,

as a k-module, ŴG has basis {1} ∪
(
en1−1
0 g1e1 · · · e

nr+1−1
0 gr+1e1

)
r∈N,n1,...,nr+1∈N∗,

g1,...,gr+1∈G

according to (a). One computes the image by zn,g 7→ −en−1
0 ge1 of the latter basis

and finds it to be equal to the former basis. Therefore, zn,g 7→ −en−1
0 ge1 induces

a bijection between the two basis and then a bijection between k〈〈Z〉〉 and ŴG.

Hence, zn,g 7→ −en−1
0 ge1 is a k-algebra isomorphism between k〈〈Z〉〉 and ŴG.

�

So, from now on, by abuse of notation, we will identify elements of ŴG with elements
of k〈〈Z〉〉 by the k-algebra isomorphism zn,g 7→ −en−1

0 ge1.

Proposition 2.1.6. There exists a k-module isomorphism k〈〈X〉〉/k〈〈X〉〉x0
κ
→ M̂G

uniquely determined by the condition that the diagram

(2.3)

k〈〈X〉〉 V̂G

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

β◦(−⊗1)

πY −·1M

κ

commutes.

We will prove this proposition by using the following general lemma. In this lemma,
for any k-module M and any k-submodule M ′, let us denote canM,M ′ : M → M/M ′

the canonical projection.

Lemma 2.1.7. Let f :M → N a k-module morphism. Let M ′ a submodule of M and
N ′, N ′′ two submodules of N such that

(a) f(M ′) ⊂ N ′ ⊂ f(M ′) +N ′′ and,
(b) canN,N ′′ ◦ f is an isomorphism,

Then, there is a unique k-module morphism f̄ : M/M ′ → N/(N ′ + N ′′) such that the
diagram

(2.4)

M N

M/M ′ N/(N ′ +N ′′)

f

canM,M′ canN,N′+N′′

f̄

commutes. Moreover, f̄ is a k-module isomorphism.

Proof. First, f̄ : M/M ′ → N/(N ′ +N ′′) is well defined since f(M ′) ⊂ N ′ ⊂ N ′ +N ′′.
Next, let us show that this k-module morphism is an isomorphism.

Injectivity: Let µ ∈ M/M ′ be such that f̄(µ) = 0. Let m ∈ M be such that µ =
canM,M ′(m). By the commutativity of the diagram (2.4), the assumption on µ implies



18 YADDADEN KHALEF

that f(m) ∈ N ′ + N ′′. But, since N ′ ⊂ f(M ′) + N ′′ we get f(m) ∈ f(M ′) + N ′′.
Therefore there exists m′ ∈ M ′ such that f(m) ∈ f(m′) + N ′′ then f(m −m′) ∈ N ′′.
This means that canN,N ′′ ◦f(m−m′) = 0. Finally, since canN,N ′′ ◦f is an isomorphism,
this implies that m = m′ (elements of M). Since m′ ∈ M ′, this implies that m ∈ M ′.
Therefore, µ = canM,M ′(m) = 0 ∈M/M ′.
Surjectivity: Diagram (2.4) can be extended to the commutative diagram

M N N/N ′′

M/M ′ N/(N ′ +N ′′) (N/N ′′)/(N ′/(N ′ ∩N ′′))

f

canM,M′ canN,N′+N′′

canN,N′′

canN/N′′,N′/(N′∩N′′)

f̄ isoN,N′,N′′

where isoN,N ′,N ′′ : N/(N ′ + N ′′) → (N/N ′′)/(N ′/(N ′ ∩ N ′′)) is the canonical isomor-
phism. We then obtain

N/(N ′ +N ′′) =iso−1
N,N ′,N ′′((N/N

′′)/(N ′/(N ′ ∩N ′′)))

=iso−1
N,N ′,N ′′ ◦ canN/N ′′,N ′/(N ′∩N ′′)(N/N

′′)

=iso−1
N,N ′,N ′′ ◦ canN/N ′′,N ′/(N ′∩N ′′) ◦ canN,N ′′ ◦ f(M)

=iso−1
N,N ′,N ′′ ◦ isoN,N ′,N ′′ ◦ f̄ ◦ canM,M ′(M) = f̄(M/M ′)

where the first equality comes from the fact that isoN,N ′,N ′′ is k-module isomorphism;
the second one from the fact that canN/N ′′,N ′/(N ′∩N ′′) is a surjective k-module mor-
phism; the third one from the fact that canN,N ′′ ◦ f is a k-module isomorphism; the
fourth one from the commutativity of the external square; and the fifth one from the
fact that canM,M ′′ is a surjective k-module morphism.

�

Proof of Proposition 2.1.6. This is done by application of Lemma 2.1.7 forM = k〈〈X〉〉,

N = V̂G, M
′ = k〈〈X〉〉x0, N

′ = V̂Ge0, N
′′ =

∑
g∈G\{1} V̂G(g − 1) and f = β ◦ (− ⊗ 1).

It, therefore, suffices to prove that criteria (a) and (b) of Lemma 2.1.7 are satisfied.

Criterion (a): β(k〈〈X〉〉x0 ⊗ 1) ⊂ V̂Ge0 ⊂ β(k〈〈X〉〉x0 ⊗ 1) +
∑

g∈G\{1} V̂G(g − 1).

For the first inclusion, we have for any a ∈ k〈〈X〉〉

β(ax0 ⊗ 1) = β(a⊗ 1)β(x0 ⊗ 1) = β(a⊗ 1)e0 ∈ V̂Ge0.

Therefore, β(k〈〈X〉〉x0 ⊗ 1) ⊂ V̂Ge0.

For the second inclusion, by using the basis of V̂G described in Proposition 2.1.4, we
have for r ∈ N, n1, . . . , nr+1 ∈ N∗ and g1, . . . , gr+1 ∈ G,

(
en1−1
0 g1e1 · · · e

nr−1
0 gre1e

nr+1−1
0 gr+1

)
e0 = en1−1

0 g1e1 · · · e
nr−1
0 gre1e

nr+1

0 gr+1

= (−1)rβ(xn1−1
0 xg1 · · · x

nr−1
0 xg1···grx

nr+1

0 ⊗ g1 · · · gr+1)

= (−1)rβ
((
xn1−1
0 xg1 · · · x

nr−1
0 xg1···grx

nr+1−1
0

)
x0 ⊗ 1

)
g1 · · · gr+1

= (−1)rβ
((
xn1−1
0 xg1 · · · x

nr−1
0 xg1···grx

nr+1−1
0

)
x0 ⊗ 1

)

+ (−1)rβ
((
xn1−1
0 xg1 · · · x

nr−1
0 xg1···grx

nr+1−1
0

)
x0 ⊗ 1

)
(g1 · · · gr+1 − 1)
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where the first equality comes from the relation ge0 = e0g for any g ∈ G; the second one
from computation (2.2) and the third one from the fact that ax0⊗g = (ax0⊗1)∗(1⊗g)
for any a ∈ k〈〈X〉〉 and any g ∈ G. Finally, the last equality shows that we obtain an

element of β(k〈〈X〉〉x0 ⊗ 1) +
∑

g∈G\{1} V̂G(g − 1), thus proving the claimed inclusion.

Criterion (b): Themap canV̂G,
∑

g∈G\{1}

V̂G(g−1)◦β◦(−⊗1) : k〈〈X〉〉 → V̂G

/( ∑
g∈G\{1}

V̂G(g − 1)

)

is an isomorphism.
Let us consider the commutative diagram

(2.5)

k〈〈X〉〉 ⊗
⊕

g∈G\{1} kG k〈〈X〉〉 ⊗ kG

⊕
g∈G\{1} (k〈〈X〉〉 ⊗ kG) k〈〈X〉〉 ⊗ kG

⊕
g∈G\{1} V̂G V̂G

id⊗σ

⊕
g∈G\{1} β β

Σ

where in the horizontal arrows we have the k-module morphisms

Σ :
⊕

g∈G\{1}

V̂G −→ V̂G, (vg)g∈G\{1} 7−→
∑

g∈G\{1}

vg(g − 1)

and

σ :
⊕

g∈G\{1}

kG −→ kG, (hg)g∈G\{1} 7−→
∑

g∈G\{1}

hg(g − 1).

Since the vertical arrows are isomorphisms, they induce an isomorphism beteween the
cokernels of the top and bottom morphisms. We can then extend the above diagram
in the following way

(2.6)

k〈〈X〉〉 ⊗
⊕

g∈G\{1} kG k〈〈X〉〉 ⊗ kG coker(id ⊗ σ)

⊕
g∈G\{1} (k〈〈X〉〉 ⊗ kG) k〈〈X〉〉 ⊗ kG

⊕
g∈G\{1} V̂G V̂G coker(Σ)

id⊗σ

⊕
g∈G\{1} β β

Σ

On the other hand, we have

coker(Σ) = V̂G

/
 ∑

g∈G\{1}

V̂G(g − 1)


 .

and

coker(σ) = kG

/
 ∑

g∈G\{1}

kG(g − 1)


 ≃ k.
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Then

coker(id ⊗ σ) ≃ k〈〈X〉〉 ⊗ coker(σ) ≃ k〈〈X〉〉 ⊗ k ≃ k〈〈X〉〉.

Thus, the isomorphism between cokernels establishes that k〈〈X〉〉 is isomorphic to

V̂G

/(∑
g∈G\{1} V̂G(g − 1)

)
. Moreover, thanks to the commutativity of diagram (2.6),

this isomorphism is exactly canV̂G,
∑

g∈G\{1}

V̂G(g−1) ◦ β ◦ (− ⊗ 1).

�

Corollary 2.1.8.

(a) The following diagram

(2.7)

k〈〈Y 〉〉 ŴG

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

̟

πY −·1M

κ◦q−1

commutes, where ̟ : k〈〈Y 〉〉 → ŴG is the k-algebra isomorphism uniquely defined
by yn,g 7→ zn,g and q is the k-module automorphism of k〈〈X〉〉/k〈〈X〉〉x0 given in
§1.1.

(b) The map − · 1M : ŴG → M̂G is a k-module isomorphism and M̂G is free of rank

1 as a ŴG-module.

Proof.

(a) One needs to show the equality of two maps from k〈〈Y 〉〉 to M̂G. Since these maps
are both k-module morphisms, it is enough to show the equality of the images of the
elements of a basis of the source module. Such a basis is (yn1,g1 · · · ynrgr)n1,...,nr∈N∗

g1,...,gr∈G

([Rac], §2.2.7.)
For r ∈ N, n1, . . . , nr ∈ N∗ and g1, . . . , gr ∈ G we have

(− · 1M) ◦̟(yn1,g1 · · · ynr,gr) = zn1,g1 · · · znr ,gr · 1M

On the other hand,

κ ◦ q−1 ◦ πY (yn1,g1 · · · ynr,gr) = κ(xn1−1
0 xg1 · · · x

n1−1
0 xg1···gr)

= β(xn1−1
0 xg1 · · · x

nr−1
0 xg1···gr ⊗ 1) · 1M

= (−1)ren1−1
0 g1e1 · · · e

nr−1
0 gre1g

−1
1 · · · g−1

r · 1M

= (−en1−1
0 g1e1) · · · (−e

nr−1
0 gre1) · 1M

= zn1,g1 · · · znr ,gr · 1M

where the first equality comes from [Rac], §2.2.7; the second one from the com-
mutative diagram (2.3); the third one from computation (2.2) with nr+1 = 1 and

gr+1 = (g1 · · · gr)
−1; and the fourth one from the fact that for any v ∈ V̂G and any

g ∈ G, we have vg · 1M = v · 1M.
(b) First, the following maps are k-module isomorphisms:
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• ̟ : k〈〈Y 〉〉 → ŴG : it sends the basis (yn1,g1 · · · ynr ,gr)r∈N,n1,...,nr∈N∗

g1,...,gr∈G
of the

k-module k〈〈Y 〉〉 to the basis7 (zn1,g1 · · · znr ,gr)r∈N,n1,...,nr∈N∗

g1,...,gr∈G
of ŴG.

• πY : k〈〈Y 〉〉 → k〈〈X〉〉/k〈〈X〉〉x0 : see [Rac], §2.2.5.

• κ ◦ q−1 : k〈〈X〉〉/k〈〈X〉〉x0 → M̂G : see Proposition 2.1.6 and [Rac], §2.2.7.
Next, the diagram (2.7) commutes, thanks to (a). This allows us to conclude that

the map − · 1M : ŴG → M̂G is a k-module isomorphism and that M̂G is a free
ŴG-module of rank 1.

�

Remark. The composed algebra morphisms k〈〈Y 〉〉
̟
−→ ŴG →֒ V̂G and k〈〈Y 〉〉 →֒

k〈〈X〉〉
β◦(−⊗1)
−→ V̂G do not coincide when G 6= {1}.

Now, we are able to put more structure on ŴG and M̂G. More precisely, we are
going to define a coproduct ŴG and a coproduct on M̂G.

Proposition-Definition 2.1.9.

(a) There exists a unique topological k-algebra morphism ∆̂W
G : ŴG → (ŴG)

⊗2 such
that for any (n, g) ∈ N∗ ×G

(2.8) ∆̂W
G (zn,g) = zn,g ⊗ 1 + 1⊗ zn,g +

n−1∑

k=1
h∈G

zk,h ⊗ zn−k,hg−1 .

The pair (ŴG, ∆̂
W
G ) is then a topological bialgebra.

(b) There exists a unique topological k-module morphism ∆̂M
G : M̂G → (M̂G)

⊗2 such
that the following diagram

(2.9)

ŴG (ŴG)
⊗̂2

M̂G (M̂G)
⊗̂2

∆̂W
G

−·1M −·1⊗2
M

∆̂M
G

commutes. The pair (M̂G, ∆̂
M
G ) is then a cocommutative coassociative coalgebra.

(c) For any w ∈ ŴG and any m ∈ M̂G we have

(2.10) ∆̂M
G (w ·m) = ∆̂W

G (w) · ∆̂M
G (m).

Proof.

(a) This is a consequence of Proposition 2.1.5(b).
(b) This is a consequence of (a) and Corollary 2.1.8(b).

(c) Since − · 1M : ŴG → M̂G is a k-module ismorphism, for m ∈ M̂G there exists a

unique w′ ∈ ŴG such that m = w′ · 1M. We then have

∆̂M
G (w ·m) = ∆̂M

G (ww′ · 1M) = ∆̂W
G (ww′) · 1⊗2

M = ∆̂W
G (w)∆̂W

G (w′) · 1⊗2
M

= ∆̂W
G (w) ·

(
∆̂W
G (w′) · 1⊗2

M

)
= ∆̂W

G (w) · ∆̂M
G (w′ · 1M) = ∆̂W

G (w) · ∆̂M
G (m)

7such a family is a basis of ŴG thanks to Proposition 2.1.5.
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where the first and the fourth equalities come from the fact that − · 1M : ŴG →
M̂G is ŴG-module morphism; the second and the fifth one from the commutative
diagram (2.9) and the third one from the fact that ∆̂W

G is a k-algebra morphism.

�

2.2. Actions of the group (G(k〈〈X〉〉),⊛) by automorphisms. We recall that the

map β : k〈〈X〉〉⋊G → V̂G is the k-algebra isomorphism given in Proposition 2.1.3 (b).

2.2.1. Actions of (G(k〈〈X〉〉),⊛) by algebra automorphisms.

Proposition-Definition 2.2.1. Let Ψ ∈ G(k〈〈X〉〉). There exists a unique topological

k-algebra automorphism aut
V ,(0)
Ψ of V̂G such that

(2.11) e0 7→ e0; e1 7→ β(Ψ−1 ⊗ 1)e1β(Ψ⊗ 1); g 7→ g, for g ∈ G,

Proof. First, let us verify that the images by the morphism aut
V ,(0)
Ψ of the generators

of V̂G satisfy the relations of V̂G. Indeed, for g, h ∈ G we have:

• aut
V ,(0)
Ψ (1G) = 1G = 1 = aut

V ,(0)
Ψ (1);

• aut
V ,(0)
Ψ (g) × aut

V ,(0)
Ψ (h) = g × h = gh = aut

V ,(0)
Ψ (gh);

• aut
V ,(0)
Ψ (g) × aut

V ,(0)
Ψ (e0) = g × e0 = e0 × g = aut

V ,(0)
Ψ (e0)× aut

V ,(0)
Ψ (g).

This proves the existence and uniqueness of the algebra endomorphism aut
V ,(0)
Ψ . Next,

in order to prove that aut
V ,(0)
Ψ is an automorphism, we show that the diagram

(2.12)

k〈〈X〉〉 ⋊G V̂G

k〈〈X〉〉 ⋊G V̂G

β

autΨ⊗idkG aut
V,(0)
Ψ

β

commutes, where autΨ is the k-algebra automorphism in (1.6). Since all arrows of
Diagram (2.12) are k-algebra morphisms, it is enough to check the commutativity on
generators:

• aut
V ,(0)
Ψ ◦ β(x0 ⊗ 1) = aut

V ,(0)
Ψ (e0) = e0 and

β ◦ (autΨ ⊗ idkG)(x0 ⊗ 1) = β(autΨ(x0)⊗ 1) = β(x0 ⊗ 1) = e0.

• For g ∈ G, aut
V ,(0)
Ψ ◦ β(1⊗ g) = aut

V ,(0)
Ψ (g) = g and

β ◦ (autΨ ⊗ idkG)(1⊗ g) = β(autΨ(1)⊗ g) = β(1 ⊗ g) = g.

• For g ∈ G, aut
V ,(0)
Ψ ◦ β(xg ⊗ 1) = aut

V ,(0)
Ψ (−ge1g

−1) = −gβ(Ψ−1 ⊗ 1)e1β(Ψ ⊗ 1)g−1

and

β ◦ (autΨ ⊗ idkG)(xg ⊗ 1) = β(autΨ(xg)⊗ 1) = β(tg(Ψ
−1)xgtg(Ψ)⊗ 1)

=β((1⊗ g) ∗ (Ψ−1 ⊗ 1) ∗ (1⊗ g−1) ∗ (xg ⊗ 1) ∗ (1⊗ g) ∗ (Ψ ⊗ 1) ∗ (1⊗ g−1))

=β(1⊗ g)β(Ψ−1 ⊗ 1)β(1 ⊗ g−1)β(xg ⊗ 1)β(1 ⊗ g)β(Ψ ⊗ 1)β(1 ⊗ g−1))

=gβ(Ψ−1 ⊗ 1)g−1(−ge1g
−1)gβ(Ψ ⊗ 1)g−1

=− gβ(Ψ−1 ⊗ 1)e1β(Ψ⊗ 1)g−1.
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Finally, aut
V ,(0)
Ψ is an automorphism thanks to the commutativity of diagram (2.12)

and the fact that β : k〈〈X〉〉 ⋊G → V̂G and autΨ ⊗ idkG : k〈〈X〉〉 ⋊G → k〈〈X〉〉 ⋊G
are k-algebra isomorphisms. �

Definition 2.2.2. For Ψ ∈ G(k〈〈X〉〉), we define aut
V ,(1)
Ψ to be the topological k-algebra

automorphism of V̂G given by

(2.13) aut
V ,(1)
Ψ := Adβ(Ψ⊗1) ◦ aut

V ,(0)
Ψ ,

Proposition 2.2.3.

(a) There is a group action of (G(k〈〈X〉〉),⊛) on V̂G by k-algebra automorphisms

(G(k〈〈X〉〉),⊛) −→ Autk−alg(V̂G), Ψ 7−→ aut
V ,(0)
Ψ

(b) There is a group action of (G(k〈〈X〉〉),⊛) on V̂G by k-algebra automorphisms

(G(k〈〈X〉〉),⊛) −→ Autk−alg(V̂G), Ψ 7−→ aut
V ,(1)
Ψ

Proof.

(a) Let us show that for any Ψ,Φ ∈ G(k〈〈X〉〉), we have

aut
V ,(0)
Ψ⊛Φ = aut

V ,(0)
Ψ ◦ aut

V ,(0)
Φ .

It suffices to prove this identity on generators. Since for Ψ ∈ G(k〈〈X〉〉) we have

aut
V ,(0)
Ψ (e0) = e0 and aut

V ,(0)
Ψ (g) = g, this is immediately true for e0 and g ∈ G.

Next,

aut
V ,(0)
Ψ⊛Φ(e1) =β((Ψ⊛ Φ)−1 ⊗ 1)e1β((Ψ ⊛ Φ)⊗ 1)

=β(autΨ(Φ
−1)Ψ−1 ⊗ 1)e1β(ΨautΨ(Φ)⊗ 1)

=β(autΨ(Φ
−1)⊗ 1)β(Ψ−1 ⊗ 1)e1β(Ψ ⊗ 1)β(autΨ(Φ)⊗ 1)

=aut
V ,(0)
Ψ (β(Φ−1 ⊗ 1))aut

V ,(0)
Ψ (e1)aut

V ,(0)
Ψ (β(Φ ⊗ 1))

=aut
V ,(0)
Ψ (β(Φ−1 ⊗ 1)e1β(Φ⊗ 1))

=aut
V ,(0)
Ψ ◦ aut

V ,(0)
Φ (e1)

where the fourth equality comes from the commutativity of Diagram (2.12).
(b) Using Identity (a), we get

aut
V ,(1)
Ψ ◦ aut

V ,(1)
Φ =Adβ(Ψ⊗1) ◦ aut

V ,(0)
Ψ ◦ Adβ(Φ⊗1) ◦ aut

V ,(0)
Φ

=Adβ(Ψ⊗1) ◦ AdautV,(0)Ψ (β(Φ⊗1))
◦ aut

V ,(0)
Ψ ◦ aut

V ,(0)
Φ

=Adβ(Ψ⊗1)β(autΨ(Φ)⊗1) ◦ aut
V ,(0)
Ψ ◦ aut

V ,(0)
Φ

=Adβ((Ψ⊛Φ)⊗1) ◦ aut
V ,(0)
Ψ⊛Φ = aut

V ,(1)
Ψ⊛Φ,

�

Proposition-Definition 2.2.4. For Ψ ∈ G(k〈〈X〉〉), the automorphism aut
V ,(1)
Ψ :

V̂G → V̂G restricts to a topological k-algebra automorphism on the k-subalgebra ŴG
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which will be denoted aut
W ,(1)
Ψ . Moreover, there is a group action of (G(k〈〈X〉〉),⊛) on

ŴG by k-algebra automorphisms

(2.14) (G(k〈〈X〉〉),⊛) −→ Autk−alg(ŴG), Ψ 7−→ aut
W ,(1)
Ψ .

Proof. For w = λ+ ve1 ∈ ŴG, we have

aut
V ,(1)
Ψ (w) =λ+ aut

V ,(1)
Ψ (v)β(Ψ ⊗ 1)β(Ψ−1 ⊗ 1)e1β(Ψ⊗ 1)β(Ψ−1 ⊗ 1)

=λ+ aut
V ,(1)
Ψ (v)e1 ∈ ŴG.

This implies that aut
V ,(1)
Ψ induces a k-algebra endomorphism of ŴG. Moreover, the

preimage of this endomorphism under the k-module isomorphism k × V̂G → ŴG,

(λ, v) 7→ λ + ve1 is the pair (id, aut
V ,(1)
Ψ ), which is a k-module automorphism. This

implies that aut
W ,(1)
Ψ is a k-module automorphism, and therefore a k-algebra automor-

phism. Thanks to this, the second part of this result can be deduced from Proposition
2.2.3(b), by restriction on ŴG. �

2.2.2. Action of (G(k〈〈X〉〉),⊛) by module automorphisms.

Definition 2.2.5. For Ψ ∈ G(k〈〈X〉〉), we define aut
V ,(10)
Ψ to be the topological k-

module automorphism of V̂G given by

(2.15) aut
V ,(10)
Ψ := ℓβ(Ψ⊗1) ◦ aut

V ,(0)
Ψ ,

Remark. Let us notice that, for any Ψ ∈ G(k〈〈X〉〉), we also have

aut
V ,(10)
Ψ = ℓβ(Ψ⊗1) ◦ aut

V ,(0)
Ψ = ℓβ(Ψ⊗1) ◦ Adβ(Ψ−1⊗1) ◦ aut

V ,(1)
Ψ = rβ(Ψ⊗1) ◦ aut

V ,(1)
Ψ .

Proposition 2.2.6. There is a group action of (G(k〈〈X〉〉),⊛) on V̂G by k-module
automorphisms

(G(k〈〈X〉〉),⊛) −→ Autk−mod(V̂G), Ψ 7−→ aut
V ,(10)
Ψ

Proof. For Ψ,Φ ∈ G(k〈〈X〉〉), we have

aut
V ,(10)
Ψ ◦ aut

V ,(10)
Φ =ℓβ(Ψ⊗1) ◦ aut

V ,(0)
Ψ ◦ ℓβ(Φ⊗1) ◦ aut

V ,(0)
Φ

=ℓβ(Ψ⊗1) ◦ ℓautV,(0)Ψ (β(Φ⊗1))
◦ aut

V ,(0)
Ψ ◦ aut

V ,(0)
Φ

=ℓβ(Ψ⊗1)β(autΨ(Φ)⊗1) ◦ aut
V ,(0)
Ψ ◦ aut

V ,(0)
Φ

=ℓβ((Ψ⊛Φ)⊗1) ◦ aut
V ,(0)
Ψ⊛Φ = aut

V ,(10)
Ψ⊛Φ .

where the last equality comes from the commutativity of Diagram (2.12) and from
Proposition 2.2.3(a). �

Lemma 2.2.7. For any Ψ ∈ G(k〈〈X〉〉), we have the following identities:

∀a, b ∈ V̂G, aut
V ,(10)
Ψ (ab) = aut

V ,(10)
Ψ (a) aut

V ,(0)
Ψ (b).(2.16)

∀a, b ∈ V̂G, aut
V ,(10)
Ψ (ab) = aut

V ,(1)
Ψ (a) aut

V ,(10)
Ψ (b).(2.17)
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Proof. Let a, b ∈ V̂G. We have

aut
V ,(10)
Ψ (ab) =ℓβ(Ψ⊗1) ◦ aut

V ,(0)
Ψ (ab) = ℓβ(Ψ⊗1)

(
aut

V ,(0)
Ψ (a) aut

V ,(0)
Ψ (b)

)

=
(
ℓβ(Ψ⊗1) ◦ aut

V ,(0)
Ψ (a)

)
aut

V ,(0)
Ψ (b) = aut

V ,(10)
Ψ (a) aut

V ,(0)
Ψ (b)

and

aut
V ,(10)
Ψ (ab) =rβ(Ψ⊗1) ◦ aut

V ,(1)
Ψ (ab) = rβ(Ψ⊗1)

(
aut

V ,(1)
Ψ (a) aut

V ,(1)
Ψ (b)

)

=aut
V ,(1)
Ψ (a)

(
rβ(Ψ⊗1) ◦ aut

V ,(1)
Ψ (b)

)
= aut

V ,(1)
Ψ (a) aut

V ,(10)
Ψ (b)

�

Proposition 2.2.8. For Ψ ∈ G(k〈〈X〉〉), the k-module automorphism aut
V ,(10)
Ψ pre-

serves the submodule V̂Ge0 +
∑

g∈G \ {1} V̂G(g − 1).

Proof. Using Lemma 2.2.72.16, we obtain for any a ∈ V̂G and (bg)g∈G ∈ (V̂G)
G :

aut
V ,(10)
Ψ


ae0 +

∑

g∈G\{1}

bg(g − 1)


 = aut

V ,(10)
Ψ (a)aut

V ,(0)
Ψ (e0) +

∑

g∈G

aut
V ,(10)
Ψ (bg)aut

V ,(0)
Ψ (g − 1)

= aut
V ,(10)
Ψ (a)e0 +

∑

g∈G\{1}

aut
V ,(10)
Ψ (bg)(g − 1) ∈ V̂Ge0 +

∑

g∈G \ {1}

V̂G(g − 1).

�

Proposition-Definition 2.2.9. For Ψ ∈ G(k〈〈X〉〉), there is a unique k-module au-

tomorphism aut
M,(10)
Ψ of M̂G such that the following diagram

V̂G V̂G

M̂G M̂G

aut
V,(10)
Ψ

−·1M −·1M

aut
M,(10)
Ψ

commutes.

Proof. Follows from Proposition 2.2.8. �

Lemma 2.2.10. For any Ψ ∈ G(k〈〈X〉〉), we have

∀(a,m) ∈ V̂G × M̂G, aut
M,(10)
Ψ (a ·m) = aut

V ,(1)
Ψ (a) · aut

M,(10)
Ψ (m).(2.18)

∀(w,m) ∈ ŴG × M̂G, aut
M,(10)
Ψ (w ·m) = aut

W ,(1)
Ψ (w) · aut

M,(10)
Ψ (m).(2.19)

Proof. The first identity is proved by using a combination of Proposition-Definition
2.2.9 and Lemma 2.2.7(2.17). The second identity can be deduced from the first by

restriction on the subalgebra ŴG. �

Corollary 2.2.11. There is a group action of (G(k〈〈X〉〉),⊛) on M̂G by topological
k-module automorphisms

(2.20) (G(k〈〈X〉〉),⊛) −→ Autk−mod

(
M̂G

)
, Ψ 7−→ aut

M,(10)
Ψ
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Proof. It is a combination of Proposition-Definition 2.2.9 and Proposition 2.2.6. �

2.3. The cocycle Γ and twisted actions. To an element Ψ ∈ G(k〈〈X〉〉), one asso-

ciates ΓΨ ∈ k[[x]]× (see (1.16)). Then ΓΨ(−e1) is an invertible element of V̂G.

Definition 2.3.1. For Ψ ∈ G(k〈〈X〉〉), we define the topological k-algebra automor-

phism of V̂G:

(2.21) Γaut
V ,(1)
Ψ := AdΓ−1

Ψ (−e1)
◦ aut

V ,(1)
Ψ .

Proposition-Definition 2.3.2. For Ψ ∈ G(k〈〈X〉〉), the automorphism Γaut
V ,(1)
Ψ re-

stricts to a topological k-algebra automorphism of the subalgebra ŴG denoted Γaut
W ,(1)
Ψ .

Proof. Follows from Proposition-Definition 2.2.4 and the fact that ΓΨ(−e1) is an in-

vertible element of ŴG. �

Proposition 2.3.3.

(a) There is a group action of (G(k〈〈X〉〉),⊛) on V̂G by topological k-algebra automor-
phisms

(2.22) (G(k〈〈X〉〉),⊛) −→ Autk−mod

(
V̂G

)
, Ψ 7−→ Γaut

V ,(1)
Ψ

(b) There is a group action of (G(k〈〈X〉〉),⊛) on ŴG by topological k-module auto-
morphisms

(2.23) (G(k〈〈X〉〉),⊛) −→ Autk−mod

(
ŴG

)
, Ψ 7−→ Γaut

W ,(1)
Ψ

Proof.

(a) It follows from Proposition 2.2.3(b), Lemma 1.2.8 and the fact that e1 is invariant

under aut
V ,(1)
Ψ for any Ψ ∈ G(k〈〈X〉〉).

(b) It follows from (a) thanks to Proposition-Definition 2.2.4.

�

Definition 2.3.4. For Ψ ∈ G(k〈〈X〉〉), we define the following topological k-module

automorphism of M̂G:

(2.24) Γaut
M,(10)
Ψ := ℓΓ−1

Ψ (−e1)
◦ aut

M,(10)
Ψ .

Lemma 2.3.5. For any Ψ ∈ G(k〈〈X〉〉), we have

∀(a,m) ∈ V̂G × M̂G,
Γaut

M,(10)
Ψ (a ·m) = Γaut

V ,(1)
Ψ (a) · Γaut

M,(10)
Ψ (m)(2.25)

∀(w,m) ∈ ŴG × M̂G,
Γaut

M,(10)
Ψ (w ·m) = Γaut

W ,(1)
Ψ (w) · Γaut

M,(10)
Ψ (m)(2.26)

Proof. Follows by a computation involving Lemma 2.2.10. �

Proposition 2.3.6. There is a group action of (G(k〈〈X〉〉),⊛) on M̂G by topological
k-module automorphisms

(2.27) (G(k〈〈X〉〉),⊛) −→ Autk−mod

(
M̂G

)
, Ψ 7−→ Γaut

M,(10)
Ψ
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Proof. For any Ψ,Φ ∈ G(k〈〈X〉〉), we have

Γaut
M,(10)
Ψ⊛Φ =ℓΓ−1

Ψ⊛Φ(−e1)
◦ aut

M,(10)
Ψ⊛Φ = ℓΓ−1

Ψ (−e1)Γ
−1
Φ (−e1)

◦ aut
M,(10)
Ψ ◦ aut

M,(10)
Φ

=ℓΓ−1
Ψ (−e1)

◦ ℓΓ−1
Φ (−e1)

◦ aut
M,(10)
Ψ ◦ aut

M,(10)
Φ

=ℓΓ−1
Ψ (−e1)

◦ aut
M,(10)
Ψ ◦ ℓΓ−1

Φ (−e1)
◦ aut

M,(10)
Φ

=Γaut
M,(10)
Ψ ◦ Γaut

M,(10)
Φ

where the seoncd equality uses Lemma 1.2.8 and Corollary 2.2.11; and the fourth
equality comes from the following computation:

ℓΓ−1
Φ (−e1)

◦ aut
M,(10)
Ψ (m) =Γ−1

Φ (−e1) aut
M,(10)
Ψ (m) = aut

V ,(1)
Ψ (Γ−1

Φ (−e1)) aut
M,(10)
Ψ (m)

=aut
M,(10)
Ψ (Γ−1

Φ (−e1)m) = aut
M,(10)
Ψ ◦ ℓΓ−1

Φ (−e1)
(m)

for any m ∈ M̂G; where the second equality uses the fact e1 is invariant under aut
V ,(1)
Ψ

and the third equality comes from Lemma 2.2.10. �

2.4. The stabilizer groups Stab(∆̂W
G )(k) and Stab(∆̂M

G )(k). Using Proposition 2.3.3,

we define the following group action of (G(k〈〈X〉〉),⊛) on Mork−alg

(
ŴG,

(
ŴG

)⊗̂2
)
:

(2.28) Ψ ·DW :=
(
Γaut

W ,(1)
Ψ

)⊗2
◦DW ◦

(
Γaut

W ,(1)
Ψ

)−1
.

In particular, the stabilizer of ∆̂W
G is the subgroup

(2.29) Stab(∆̂W
G )(k) :=

{
Ψ ∈ G(k〈〈X〉〉) |

(
Γaut

W ,(1)
Ψ

)⊗2
◦ ∆̂W

G = ∆̂W
G ◦ Γaut

W ,(1)
Ψ

}
.

Similarly, Proposition 2.3.6 provides a group action of (G(k〈〈X〉〉),⊛) on the k-

module Mork−mod

(
M̂G,

(
M̂G

)⊗̂2
)
:

(2.30) Ψ ·DM :=
(
Γaut

M,(10)
Ψ

)⊗2
◦DM ◦

(
Γaut

M,(10)
Ψ

)−1
.

In particular, the stabilizer of ∆̂M
G is the subgroup

(2.31)

Stab(∆̂M
G )(k) :=

{
Ψ ∈ G(k〈〈X〉〉) |

(
Γaut

M,(10)
Ψ

)⊗2
◦ ∆̂M

G = ∆̂M
G ◦ Γaut

M,(10)
Ψ

}
.

We then have the following inclusion of subgroups

Theorem 2.4.1. Stab(∆̂M
G )(k) ⊂ Stab(∆̂W

G )(k) (as subgroups of (G(k〈〈X〉〉),⊛)).

Proof. Let Ψ ∈ Stab(∆̂M
G )(k). First, let us notice that

(
Γ−1
Ψ (−e1)β(Ψ ⊗ 1) · 1M

)⊗2
=
(

Γaut
M,(10)
Ψ (1M)

)⊗2
(2.32)

=
(

Γaut
M,(10)
Ψ

)⊗2
◦ ∆̂M

G (1M) = ∆̂M
G ◦ Γaut

M,(10)
Ψ (1M),
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where the last equality follows from the assumption on Ψ. Then for any w ∈ ŴG,

∆̂W
G

(
Γaut

W ,(1)
Ψ (w)

)
·
(
Γ−1
Ψ (−e1)β(Ψ ⊗ 1) · 1M

)⊗2
(2.33)

= ∆̂W
G

(
Γaut

W ,(1)
Ψ (w)

)
· ∆̂M

G

(
Γaut

M,(10)
Ψ (1M)

)

= ∆̂M
G

(
Γaut

W ,(1)
Ψ (w) ·Γ aut

M,(10)
Ψ (1M)

)
= ∆̂M

G

(
Γaut

M,(10)
Ψ (w · 1M)

)

=
(

Γaut
M,(10)
Ψ

)⊗2
◦ ∆̂M

G (w · 1M) =
(

Γaut
M,(10)
Ψ

)⊗2 (
∆̂W
G (w) · ∆̂M

G (1M)
)

=
(

Γaut
W ,(1)
Ψ

)⊗2 (
∆̂W
G (w)

)
·
(

Γaut
M,(10)
Ψ

)⊗2 (
∆̂M
G (1M)

)

=
(

Γaut
W ,(1)
Ψ

)⊗2 (
∆̂W
G (w)

)
·
(
Γ−1
Ψ (−e1)β(Ψ ⊗ 1) · 1M

)⊗2

where the first and seventh equality come from (2.32), the second and the fifth from
Proposition-Definition 2.1.9(c), the third and the sixth from Lemma 2.3.5 and the fourth

from the fact that Ψ ∈ Stab(∆̂M
G )(k). Next, since Γ−1

Ψ (−e1)β(Ψ ⊗ 1) is invertible in

V̂G, the map ŴG → M̂G, w 7→ w Γ−1
Ψ (−e1)β(Ψ ⊗ 1) · 1M is an isomorphism of left

ŴG-modules. Consequently, Identity (2.33) implies that

(2.34) ∀w ∈ ŴG,
(

Γaut
W ,(1)
Ψ

)⊗2 (
∆̂W
G (w)

)
= ∆̂W

G

(
Γaut

W ,(1)
Ψ (w)

)
,

thus establishing that Ψ ∈ Stab(∆̂W
G )(k). �

3. The stabilizer groups in terms of Racinet’s formalism

In this part, we translate the inclusion of stabilizers in Theorem 2.4.1 into Racinet’s
formalism. In §3.1, we relate the various (G(k〈〈X〉〉),⊛)-actions we recalled from [Rac]

in §1 and the ones we constructed in §2. This allows us to identify the group Stab(∆̂M
G )

from (2.31) with the group Stab(∆̂mod
⋆ ) from [EF0]. In §3.2, we transport the action

of the group (G(k〈〈X〉〉),⊛) on ŴG given in 2.3.3(b) into an action of the same group
on the algebra k〈〈Y 〉〉 and express the latter action in terms of Racinet’s formalism.

This enables us to identify the stabilizer group Stab(∆̂W
G ) given in 2.29 with a group

Stab(∆̂alg
⋆ ) defined in the framework of Racinet’s formalism. The inclusion of stabilizers

from Theorem 2.4.1 is then expressed as the inclusion Stab(∆̂mod
⋆ ) ⊂ Stab(∆̂alg

⋆ ) (see
Corollary 3.2.5).

3.1. Identification of the subgroups Stab(∆̂M
G ) and Stab(∆̂mod

⋆ ).

3.1.1. A (G(k〈〈X〉〉),⊛)-module isomorphism. Let us recall β : k〈〈X〉〉 ⋊G → V̂G the
k-algebra isomorphism given in Proposition 2.1.3 (b).

Lemma 3.1.1. For Ψ ∈ G(k〈〈X〉〉), the following diagram

(3.1)

k〈〈X〉〉 V̂G

k〈〈X〉〉 V̂G

β◦(−⊗1)

autΨ aut
V,(0)
Ψ

β◦(−⊗1)
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commutes; where autΨ is the k-algebra automorphism of k〈〈X〉〉 given in (1.6) and

aut
V ,(0)
Ψ is the k-algebra automorphism of V̂G given in Proposition-Definition 2.2.1.

Proof. This is done by left composing Diagram (2.12) with the following commutative
diagram

k〈〈X〉〉 k〈〈X〉〉 ⋊G

k〈〈X〉〉 k〈〈X〉〉 ⋊G

−⊗1

autΨ autΨ⊗idkG

−⊗1

�

Lemma 3.1.2. For Ψ ∈ G(k〈〈X〉〉), the following diagram

(3.2)

k〈〈X〉〉 V̂G

k〈〈X〉〉 V̂G

β◦(−⊗1)

SΨ aut
V,(10)
Ψ

β◦(−⊗1)

commutes; where SΨ is the k-module automorphism of k〈〈X〉〉 given in (1.7) and

aut
V ,(10)
Ψ is the k-module automorphism of V̂G given in (2.15).

Proof. Thanks to Identities (1.7) and (2.15), this is done by composing from the bottom
Diagram (3.1) with the following commutative diagram

k〈〈X〉〉 V̂G

k〈〈X〉〉 V̂G

β◦(−⊗1)

ℓΨ ℓβ(Ψ⊗1)

β◦(−⊗1)

�

Lemma 3.1.3. For Ψ ∈ G(k〈〈X〉〉), the following diagram

(3.3)

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

κ◦q−1

SYΨ aut
M,(10)
Ψ

κ◦q−1

commutes; where SYΨ is the k-module automorphism of k〈〈X〉〉/k〈〈X〉〉x0 given in

Proposition-Definition 1.2.6, aut
M,(10)
Ψ is the k-module automorphism of M̂G given

in Proposition-Definition 2.2.9, κ : k〈〈X〉〉/k〈〈X〉〉x0 → M̂G is the k-module isomor-
phism in Proposition 2.1.6 and q is the k-module automorphism of k〈〈X〉〉/k〈〈X〉〉x0
given in §1.1.
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Proof. Let us consider the following cube

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

k〈〈X〉〉 V̂G

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

k〈〈X〉〉 V̂G

SYΨ

κ◦q−1

aut
M,(10)
Ψ

β◦(−⊗1)

SΨ

q◦πY

aut
V,(10)
Ψ

−·1M

κ◦q−1

β◦(−⊗1)

q◦πY

−·1M

First, the left (resp. right) side commutes by definition of SYΨ (resp. aut
M,(10)
Ψ ). Then,

the upper and lower sides are exactly the same square, which is commutative thanks to
Proposition 2.1.6. Finally, Lemma 3.1.2 gives us the commutativity of the front side.
This collection of commutativities together with the surjectivity of q ◦ πY implies that
the back side of the cube commutes, which is exactly Diagram (3.3). �

Proposition 3.1.4. For Ψ ∈ G(k〈〈X〉〉), the following diagram

(3.4)

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

κ◦q−1

ΓSYΨ
Γaut

M,(10)
Ψ

κ◦q−1

commutes; where ΓSYΨ and Γaut
M,(10)
Ψ are respectively k-module automorphisms of

k〈〈X〉〉/k〈〈X〉〉x0 and M̂G. It follows that κ ◦ q−1 is an isomorphism between the

(G(k〈〈X〉〉),⊛)-modules8 k〈〈X〉〉/k〈〈X〉〉x0 and M̂G.

Proof. This is done by composing from the bottom Diagram (3.3) with the following
diagram

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

κ◦q−1

ℓ
Γ−1
Ψ

(x1)
ℓ
Γ−1
Ψ

(−e1)

κ◦q−1

8see Corollary 1.2.9 (resp. Proposition 2.3.6) for the (G(k〈〈X〉〉),⊛)-module structure of

k〈〈X〉〉/k〈〈X〉〉x0 (resp. M̂G)
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which we show is commutative. Indeed,

ℓΓ−1
Ψ (−e1)

◦ κ ◦ q−1 ◦ q ◦ πY = ℓΓ−1
Ψ (−e1)

◦ (− · 1M) ◦ β ◦ (−⊗ 1)

= (− · 1M) ◦ ℓβ(Γ−1
Ψ (x1)⊗1) ◦ β ◦ (−⊗ 1) = (− · 1M) ◦ β ◦ (−⊗ 1) ◦ ℓΓ−1

Ψ (x1)

= κ ◦ q−1 ◦ q ◦ πY ◦ ℓΓ−1
Ψ (x1)

= κ ◦ q−1 ◦ ℓΓ−1
Ψ (x1)

◦ q ◦ πY

where the first and fourth equalities come from the commutativity of Diagram (2.3);

the second one from the fact that − · 1M : V̂G → M̂G is a V̂G-module morphism; the
third one from the fact that β ◦ (− ⊗ 1) : k〈〈X〉〉 → V̂G is a k-algebra morphism and
the last one from the fact that πY : k〈〈X〉〉 → k〈〈X〉〉/k〈〈X〉〉x0 is k〈〈X〉〉-module
morphism and that for any a ∈ k〈〈X〉〉, q(x1a) = x1q(a).
Finally, since q ◦ πY is a surjective k-module morphism, it follows that

ℓΓ−1
Ψ (−e1)

◦ κ ◦ q−1 = κ ◦ q−1 ◦ ℓΓ−1
Ψ (x1)

,

which is the wanted result. �

3.1.2. An isomorphism of coalgebras. Let us recall ̟ : k〈〈Y 〉〉 → ŴG the k-algebra
isomorphism given in Corollary 2.1.8(a).

Lemma 3.1.5. The following diagram

(3.5)

k〈〈Y 〉〉 ŴG

k〈〈Y 〉〉⊗2 Ŵ⊗2
G

̟

∆̂alg
⋆

∆̂W
G

̟⊗2

commutes; where ∆̂alg
⋆ (resp. ∆̂W

G ) is the coproduct of k〈〈Y 〉〉 (resp. ŴG) given in (1.4)
(resp. (2.8)). In other words, the map ̟ is a bialgebra isomorphism.

Proof. Since all arrows on diagram (3.5) are k-algebra morphisms, it is enough to work
on generators. For (n, g) ∈ N∗ ×G we have

̟⊗2 ◦ ∆̂alg
⋆ (yn,g) =̟

⊗2


yn,g ⊗ 1 + 1⊗ yn,g +

n−1∑

k=1
h∈G

yk,h ⊗ yn−k,hg−1




=zn,g ⊗ 1 + 1⊗ zn,g +
n−1∑

k=1
h∈G

zk,h ⊗ zn−k,hg−1 .

On the other hand

∆̂W
G ◦̟(yn,g) = ∆̂W

G (zn,g) = zn,g ⊗ 1 + 1⊗ zn,g +
n−1∑

k=1
h∈G

zk,h ⊗ zn−k,hg−1 .

�
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Lemma 3.1.6. The following diagram

(3.6)

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

(k〈〈X〉〉/k〈〈X〉〉x0)
⊗2 M̂⊗2

G

κ◦q−1

∆̂mod
⋆

∆̂M
G

(κ◦q−1)⊗2

commutes; where ∆̂mod
⋆ (resp. ∆̂M

G ) is the coproduct of k〈〈X〉〉/k〈〈X〉〉x0 (resp. M̂G)
given in (1.5) (resp. (2.9)).

Proof. Let us consider the following cube

k〈〈X〉〉/k〈〈X〉〉x0 M̂G

k〈〈Y 〉〉 ŴG

(k〈〈X〉〉/k〈〈X〉〉x0)
⊗2 M̂⊗2

G

k〈〈Y 〉〉⊗2 Ŵ⊗2
G

∆̂mod
⋆

κ◦q−1

∆̂M
G

̟

∆̂alg
⋆

πY

∆̂W
G

−·1M

(κ◦q−1)⊗2

̟⊗2

π⊗2
Y

(−·1M)⊗2

First, the left (resp. right) side commutes by definition of ∆̂mod
⋆ (resp. ∆̂M

G ). Then,
the upper side commutes thanks to Corollary 2.1.8 and the lower side is exactly the
tensor square of the latter so is also commutative. Finally, Lemma 3.1.5 gives us the
commutativity of the front side. This collection of commutativities together with the
surjectivity of πY implies that the back side of the cube commutes, which is exactly
Diagram (3.6). �

3.1.3. Identification of stabilizer groups.

Theorem 3.1.7. Stab(∆̂M
G )(k) = Stab(∆̂mod

⋆ )(k) (as subgroups of (G(k〈〈X〉〉),⊛)).

Proof. Thanks to proposition 3.1.4, the map κ ◦ q−1 : k〈〈X〉〉/k〈〈X〉〉x0 → M̂G is a
(G(k〈〈X〉〉),⊛)-module isomorphism. So, it induces a (G(k〈〈X〉〉),⊛)-module isomor-

phism Mork−mod(k〈〈X〉〉/k〈〈X〉〉x0 , (k〈〈X〉〉/k〈〈X〉〉x0)
⊗2) → Mork−mod(M̂G,M̂

⊗2
G )

which is given by
∆ 7→ (κ ◦ q−1)⊗2 ◦∆ ◦ (κ ◦ q−1)−1

(see (1.20) for the definition of the (G(k〈〈X〉〉),⊛)-module structure on the k-module
Mork−mod(k〈〈X〉〉/k〈〈X〉〉x0 , (k〈〈X〉〉/k〈〈X〉〉x0)

⊗2) and (2.30) for the (G(k〈〈X〉〉),⊛)-

module structure on the k-module Mork−mod(M̂G,M̂
⊗2
G ).) Moreover, thanks to Lemma

3.1.6, the coproduct ∆̂mod
⋆ is sent to the coproduct ∆̂M

G via this isomorphism. Thus,
they have the same stabilizer. �
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3.2. The stabilizer group Stab(∆̂W
G ) in Racinet’s formalism.

Proposition-Definition 3.2.1. For Ψ ∈ G(k〈〈X〉〉), we denote ΓautYΨ the k-algebra
automorphism of k〈〈Y 〉〉

(3.7) ΓautYΨ := ̟−1 ◦ Γaut
W ,(1)
Ψ ◦̟

where Γaut
W ,(1)
Ψ is as in Proposition-Definition 2.3.2, ̟ : k〈〈Y 〉〉 → ŴG as in Corollary

2.1.8(a). Moreover, there is a group action of (G(k〈〈X〉〉),⊛) on k〈〈Y 〉〉 by k-algebra
automorphisms given by

(3.8) G(k〈〈X〉〉) −→ Autk−alg(k〈〈Y 〉〉), Ψ 7−→ ΓautYΨ

Proof. For Ψ,Φ ∈ G(k〈〈X〉〉) we have

ΓautYΨ⊛Φ =̟−1 ◦ Γaut
W ,(1)
Ψ⊛Φ ◦̟ = ̟−1 ◦ Γaut

W ,(1)
Ψ ◦ Γaut

W ,(1)
Φ ◦̟

=̟−1 ◦ Γaut
W ,(1)
Ψ ◦̟ ◦̟−1 ◦ Γaut

W ,(1)
Φ ◦̟ = ΓautYΨ ◦ ΓautYΦ

�

We aim to give an explicit formulation of the action ΓautY in terms of Racinet’s
objects. Recall from §1.1 that for any g ∈ G and any a ∈ k〈〈X〉〉, axg ∈ k〈〈Y 〉〉. We
then have the following Lemma:

Lemma 3.2.2. Let g ∈ G. For any a ∈ k〈〈X〉〉 we have β(axg ⊗ g) = ̟ ◦ qY (axg).

Proof. It is enough to show this on a basis of the k-module k〈〈X〉〉. For r ∈ N,
n1, . . . , nr+1 ∈ N∗ and g1, . . . , gr ∈ G we have

β(xn1−1
0 xg1 · · · x

nr−1
0 xgrx

nr+1−1
0 xg ⊗ g) = (−1)ren1−1

0 g1e1g
−1
1 · · · enr−1

0 gre1g
−1
r e

nr+1−1
0 ge1

= (−1)ren1−1
0 g1e1 · · · e

nr−1
0 g−1

r−1gre1e
nr+1−1
0 g−1

r ge1 = zn1,g1 · · · znr,g−1
r−1gr

znr+1,g
−1
r g,

where the second equality comes from a computation similar to (2.2) and the third one
from the fact that for any i ∈ {2, . . . , r}, g−1

i e0 = e0g
−1
i . On the other hand,

̟ ◦ qY (x
n1−1
0 xg1 · · · x

nr−1
0 xgrx

nr+1−1
0 xg) = ̟(yn1,g1 · · · ynr,g−1

r−1gr
ynr+1,g

−1
r g)

= zn1,g1 · · · znr ,g−1
r−1gr

znr+1,g
−1
r g.

�

Proposition 3.2.3. For Ψ ∈ G(k〈〈X〉〉) and (n, g) ∈ N∗ ×G we have

(3.9) ΓautYΨ(yn,g) = qY
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg

(
Ψ−1ΓΨ(x1)

)
xg
)
.

Proof. Let us start with the following computation

Γaut
W ,(1)
Ψ (zn,g) = −Γ−1

Ψ (−e1)β(Ψ⊗ 1)en−1
0 gβ(Ψ−1 ⊗ 1)e1ΓΨ(−e1)

= −Γ−1
Ψ (−e1)β(Ψ ⊗ 1)en−1

0 gβ(Ψ−1 ⊗ 1)ΓΨ(−e1)e1

= β((Γ−1
Ψ (x1)⊗ 1) ∗ (Ψ ⊗ 1) ∗ (xn−1

0 ⊗ 1) ∗ (1⊗ g) ∗ (Ψ−1 ⊗ 1) ∗ (ΓΨ(x1)⊗ 1) ∗ (x1 ⊗ 1))

= β
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg

(
Ψ−1ΓΨ(x1)

)
xg
)

= ̟ ◦ qY
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg

(
Ψ−1ΓΨ(x1)

)
xg
)
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where tg is the k-algebra automorphism given in §1.1; and the last equality comes from
Lemma 3.2.2. Thanks to this, we have for any (n, g) ∈ N∗ ×G,

ΓautYΨ(yn,g) = ̟−1 ◦Γ aut
W ,(1)
Ψ ◦̟(yn,g) = ̟−1 ◦ Γaut

W ,(1)
Ψ (zn,g)

= ̟−1 ◦̟ ◦ qY
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg

(
Ψ−1ΓΨ(x1)

)
xg
)

= qY
(
Γ−1
Ψ (x1)Ψx

n−1
0 tg

(
Ψ−1ΓΨ(x1)

)
xg
)
.

�

Using Proposition 3.2.1, we define the following group action of (G(k〈〈X〉〉),⊛) on

Mork−alg

(
k〈〈Y 〉〉,k〈〈Y 〉〉⊗̂2

)
:

(3.10) Ψ ·D :=
(
ΓautYΨ

)⊗2
◦D ◦

(
ΓautYΨ

)−1
.

In particular, the stabilizer of ∆̂alg
⋆ is the subgroup

(3.11) Stab(∆̂alg
⋆ )(k) :=

{
Ψ ∈ G(k〈〈X〉〉) |

(
ΓautYΨ

)⊗2
◦ ∆̂alg

⋆ = ∆̂alg
⋆ ◦ ΓautYΨ

}
.

Theorem 3.2.4. Stab(∆̂alg
⋆ )(k) = Stab(∆̂W

G )(k) (as subgroups of (G(k〈〈X〉〉),⊛)).

Proof. Thanks to Proposition-Definition 3.2.1, the map ̟ : k〈〈Y 〉〉 → ŴG is an isomor-
phism of (G(k〈〈X〉〉),⊛)-modules. So, it induces a (G(k〈〈X〉〉),⊛)-module isomorphism

Mork−alg(k〈〈Y 〉〉,k〈〈Y 〉〉⊗2) → Mork−alg(ŴG, Ŵ
⊗2
G ) which is given by

∆ 7→ ̟⊗2 ◦∆ ◦̟−1

Moreover, thanks to Lemma 3.1.5, the coproduct ∆̂alg
⋆ is sent to the coproduct ∆̂W

G via
this isomorphism. Thus, they have the same stabilizer. �

Corollary 3.2.5. Stab(∆̂mod
⋆ )(k) ⊂ Stab(∆̂alg

⋆ )(k) (as subgroups of (G(k〈〈X〉〉),⊛)).

Proof. Follows immediately from Theorem 2.4.1 thanks to Theorems 3.1.7 and 3.2.4.
�

4. Affine group scheme and Lie algebraic aspects

In this part, we show that the results obtained in §2 and §3 fit in the framework of
affine Q-group schemes and make explicit the associated Lie algebraic aspects. More
precisely, we use the result of [EF0] Lemma 5.1 to show that the stabilizer group

functors Stab(∆̂M
G ) and Stab(∆̂M

G ) are affine Q-group schemes, whose Lie algebras are
stabilizer Lie algebras which we make explicit. In order to carry out this program,

in §4.1, we define Lie algebra actions of (L̂ib(X), 〈·, ·〉) on V̂Q
G by derivations and by

endomorphisms. From this, we derive in §4.2 endomorphism actions on M̂G that leads
us to an explicit form of the Lie algebra of Stab(∆̂M

G ) that we show to be equal to the

Lie algebra stab(∆̂mod
⋆ ) of (1.35). In §4.3, we define derivation actions on ŴG that make

explicit the Lie algebra stab(∆̂W
G ) of Stab(∆̂W

G ) which we show to contain stab(∆̂M
G ). In

§4.4, we identify stab(∆̂W
G ) with a Lie algebra stabilizer stab(∆̂alg

⋆ ) defined in Racinet’s
formalism by considering the infinitesimal version of the algebra automorphism given

in §3.2. We conclude by the inclusion stab(∆̂mod
⋆ ) ⊂ stab(∆̂alg

⋆ ).
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4.1. Actions of the Lie algebra (L̂ib(X), 〈·, ·〉) on V̂Q
G.

Proposition-Definition 4.1.1. Let ψ ∈ L̂ib(X). There exists a unique Q-algebra

derivation der
V ,(0)
ψ of V̂Q

G given by

e0 7→ 0, e1 7→ [e1, β(ψ ⊗ 1)], g 7→ 0, for g ∈ G.

There is a Lie algebra action of (L̂ib(X), 〈·, ·〉) on V̂Q
G by Q-algebra derivations

(L̂ib(X), 〈·, ·〉) −→ DerQ−alg(V̂
Q
G), ψ 7−→ der

V ,(0)
ψ .

Proof. One can prove that the assignment k 7→ Autk−alg(V̂G) is a Q-group scheme

with Lie algebra DerQ−alg(V̂
Q
G) and that the map (G(k〈〈X〉〉),⊛) → Autk−alg(V̂G),

Ψ 7→ aut
V ,(0)
Ψ is a morphism of Q-group schemes from k 7→ (G(k〈〈X〉〉),⊛) to the latter

k 7→ Autk−alg(V̂G) using Proposition 2.2.3(a). One checks that the corresponding
morphism of Lie algebras is as announced. �

Proposition-Definition 4.1.2. For ψ ∈ L̂ib(X), we define der
V ,(1)
ψ the Q-algebra

derivation of V̂Q
G given by

(4.1) der
V ,(1)
ψ = adβ(ψ⊗1) + der

V ,(0)
ψ .

There is a Lie algebra action of (L̂ib(X), 〈·, ·〉) on V̂Q
G by Q-algebra derivations

(L̂ib(X), 〈·, ·〉) −→ DerQ−alg(V̂
Q
G), ψ 7−→ der

V ,(1)
ψ .

Proof. Same as proof of Proposition-Definition 4.1.1, replacing the morphism Ψ 7→

aut
V ,(0)
Ψ by Ψ 7→ aut

V ,(1)
Ψ and using Proposition 2.2.3(b). �

Proposition-Definition 4.1.3. For ψ ∈ L̂ib(X), we define end
V ,(10)
ψ to be the Q-linear

endomorphism of V̂Q
G given by

(4.2) end
V ,(10)
ψ := ℓβ(ψ⊗1) + der

V ,(0)
ψ .

There is a Lie algebra action of (L̂ib(X), 〈·, ·〉) on V̂Q
G by Q-linear endomorphisms

(L̂ib(X), 〈·, ·〉) −→ EndQ(V̂
Q
G), ψ 7−→ end

V ,(10)
ψ .

Proof. Same as proof of Proposition-Definition 4.1.1, introducing the Q-group scheme

k 7→ Autk−mod(V̂G), whose Lie algebra is EndQ(V̂
Q
G), and viewing Ψ 7→ aut

V ,(10)
Ψ as a

Q-group scheme morphism from k 7→ (G(k〈〈X〉〉),⊛)) to k 7→ Autk−mod(V̂G) thanks to
Proposition 2.2.6. �

4.2. The stabilizer Lie algebra stab(∆̂M
G ).
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Proposition-Definition 4.2.1. For ψ ∈ L̂ib(X), there is a unique Q-linear endomor-

phism end
M,(10)
ψ of M̂Q

G such that the following diagram commutes

(4.3)

V̂Q
G V̂Q

G

M̂Q
G M̂Q

G

end
V,(10)
ψ

−·1M −·1M

end
M,(10)
ψ

There is a Lie algebra action of (L̂ib(X), 〈·, ·〉) on M̂G by Q-linear endomorphisms

(L̂ib(X), 〈·, ·〉) −→ EndQ(M̂
Q
G), ψ 7−→ end

M,(10)
ψ .

Proof. The commutative diagram is given by applying Proposition-Definition 2.2.9 for

k = Q[ǫ]/(ǫ2) and ψ ∈ ker
(
G(k〈〈X〉〉) → G(Q〈〈X〉〉)

)
. For the second statement,

one first checks that the assignment k 7→ Autk−mod(M̂G) is an affine Q-group scheme

whose Lie algebra is EndQ(M̂
Q
G). Then, using Corollary 2.2.11, one deduces that the

map Ψ 7→ aut
M,(10)
Ψ is a Q-group scheme morphism from (k 7→ (G(k〈〈X〉〉),⊛)) to(

k 7→ Autk−mod(M̂G)
)
. One finally proves that endM,(10) is its corresponding Lie

algebra morphism. �

To ψ ∈ L̂ib(X), one associates γψ ∈ Q[[x]] (see (1.28)). Then γψ(−e1) is an element

of V̂Q
G .

Proposition-Definition 4.2.2. For ψ ∈ L̂ib(X), we define the following Q-linear

endomorphism of M̂Q
G:

(4.4) γend
M,(10)
ψ := ℓ−γψ(−e1) + end

M,(10)
ψ .

There is a Lie algebra action of (L̂ib(X), 〈·, ·〉) on M̂Q
G by Q-linear endomorphisms

(4.5) (L̂ib(X), 〈·, ·〉) −→ EndQ(M̂
Q
G), ψ 7−→ γend

M,(10)
ψ

Proof. The maps Ψ 7→ aut
M,(10)
Ψ and Ψ 7→ Γaut

M,(10)
Ψ are Q-group scheme morphisms

from (k 7→ (G(k〈〈X〉〉),⊛)) to
(
k 7→ Autk−mod(M̂G)

)
. The Q-Lie algebra morphism

associated to the former Q-group scheme morphism is ψ 7→ end
M,(10)
ψ by the proof

of Proposition-Definition 4.2.1. The Lie algebra morphism associated to the latter Q-

group scheme morphism takes ψ ∈ L̂ib(X) to the right hand side of (4.4) in view of

(2.24), therefore is given by ψ 7→ γend
M,(10)
ψ . It follows that the latter map is a Lie

algebra morphism. �

Thanks to this result, we are able to provide a Lie algebra action of (L̂ib(X), 〈·, ·〉)

on the space MorQ

(
M̂Q

G,
(
M̂Q

G

)⊗̂2
)

via

(4.6) ψ ·DM :=
(
γend

M,(10)
ψ ⊗ id + id⊗ γend

M,(10)
ψ

)
◦DM −DM ◦ γend

M,(10)
ψ .
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In particular, the stabilizer of ∆̂M
G is the Lie subalgebra

(4.7)

stab(∆̂M
G ) :=

{
ψ ∈ L̂ib(X) |(
γend

M,(10)
ψ ⊗ id + id⊗ γend

M,(10)
ψ

)
◦DM = DM ◦ γend

M,(10)
ψ

}

For a commutative Q-algebra k, recall the group Stab(∆̂M
G )(k) in (2.31). One then has

Proposition 4.2.3. The assignment Stab(∆̂M
G ) : k 7→ Stab(∆̂M

G )(k) is an affine Q-

group scheme and Lie(Stab(∆̂M
G )) = stab(∆̂M

G ).

Proof. The first statement is obtained by applying [EF0], Lemma 5.1 where v = ∆̂M
G

and the second one comes from the fact that the (L̂ib(X), 〈·, ·〉)-action on MorQ

(
M̂Q

G,
(
M̂Q

G

)⊗̂2
)

given in (4.6) is the infinitesimal version of the group action of (G(k〈〈X〉〉),⊛) on

Mork−mod

(
M̂G,

(
M̂G

)⊗̂2
)

given in (2.30), for any Q-algebra k. �

Corollary 4.2.4. stab(∆̂M
G ) = stab(∆̂mod

⋆ ) (as Lie subalgebras of (L̂ib(X), 〈·, ·〉)).

Proof. It follows from Theorem 3.1.7 thanks to Propositions 4.2.3 and 1.3.7(c). �

4.3. The stabilizer Lie algebra stab(∆̂W
G ).

Proposition-Definition 4.3.1. For ψ ∈ L̂ib(X), we define the Q-algebra derivation

of V̂Q
G:

(4.8) γder
V ,(1)
ψ := ad−γψ(−e1) + der

V ,(1)
ψ .

There is a Lie algebra action of (L̂ib(X), 〈·, ·〉) on V̂Q
G by Q-algebra derivations

(4.9) (L̂ib(X), 〈·, ·〉) −→ DerQ−alg(V̂
Q
G), ψ 7−→ γder

V ,(1)
ψ .

Proof. The maps Ψ 7→ aut
V ,(1)
Ψ and Ψ 7→ Γaut

V ,(1)
Ψ are Q-group scheme morphisms

from (k 7→ (G(k〈〈X〉〉),⊛)) to
(
k 7→ Autk−alg(V̂G)

)
. The Q-Lie algebra morphism as-

sociated to the former Q-group scheme morphism is ψ 7→ der
V ,(1)
ψ by the proof of

Proposition-Definition 4.1.2. The Lie algebra morphism associated to the latter Q-

group scheme morphism takes ψ ∈ L̂ib(X) to the right hand side of (4.9) in view of

(2.21), therefore is given by ψ 7→ γder
V ,(1)
ψ . It follows that the latter map is a Lie

algebra morphism. �

Proposition-Definition 4.3.2. For ψ ∈ L̂ib(X), the derivation γder
V ,(1)
ψ restricts to

a derivation of the subalgebra ŴQ
G denoted γder

W ,(1)
ψ . Moreover, there is a Lie algebra

action of (L̂ib(X), 〈·, ·〉) on ŴQ
G by Q-algebra derivations

(4.10) (L̂ib(X), 〈·, ·〉) −→ DerQ−alg(Ŵ
Q
G), ψ 7−→γ der

W ,(1)
ψ
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Proof. One can prove that the assignment k 7→ Autk−alg(ŴG) is a Q-group scheme with

Lie algebra DerQ−alg(Ŵ
Q
G). The map Ψ 7→ Γaut

V ,(1)
Ψ is a Q-group scheme morphism

from (k 7→ (G(k〈〈X〉〉),⊛)) to
(
k 7→ Autk−alg(V̂G)

)
and, by the proof of Proposition-

Definition 4.3.1, its associated Q-Lie algebra is ψ 7→ γder
V ,(1)
ψ . Thanks to Proposition

2.3.3(b), we obtain the following commutative diagram

ŴG ŴG

V̂G V̂G

Γaut
W,(1)
Ψ

Γaut
V,(1)
Ψ

where Ψ ∈ G(k〈〈X〉〉) with k a commutative Q-algebra. Using this diagram for

k = Q[ǫ]/(ǫ2) and ψ ∈ ker
(
G(k〈〈X〉〉) → G(Q〈〈X〉〉)

)
, one obtains that the derivation

γder
V ,(1)
ψ restricts to a derivation on ŴQ

G associated to the automorphism Γaut
W ,(1)
Ψ ,

which we denoted γder
W ,(1)
ψ . Moreover, the diagram states that Q-group scheme

morphism provided by Ψ 7→ Γaut
V ,(1)
Ψ defines a Q-group scheme morphism Ψ 7→

Γaut
W ,(1)
Ψ from (k 7→ (G(k〈〈X〉〉),⊛)) to

(
k 7→ Autk−alg(ŴG)

)
. Therefore, the map

ψ 7→ γder
W ,(1)
ψ from (L̂ib(X), 〈·, ·〉) to DerQ−alg(Ŵ

Q
G) which is the infintesimal version

of the latter Q-group scheme morphism is a Q-Lie algebra morphism. �

Using Proposition-Definition 4.3.2, one can define the following Lie algebra action of

(L̂ib(X), 〈·, ·〉) on the space MorQ

(
ŴQ
G ,
(
ŴQ
G

)⊗̂2
)
:

(4.11) ψ ·DW :=
(
γder

W ,(1)
ψ ⊗ id + id⊗ γder

W ,(1)
ψ

)
◦DW −DW ◦ γder

W ,(1)
ψ .

In particular, the stabilizer of ∆̂W
G is the Lie subalgebra

(4.12)

stab(∆̂W
G ) :=

{
ψ ∈ L̂ib(X) |(
γder

W ,(1)
ψ ⊗ id + id⊗ γder

W ,(1)
ψ

)
◦DW = DW ◦ γder

W ,(1)
ψ

}
.

For a commutative Q-algebra k, recall the group Stab(∆̂W
G )(k) in (2.29). One then has

Proposition 4.3.3. The assignment Stab(∆̂W
G ) : k 7→ Stab(∆̂W

G )(k) is an affine Q-

group scheme and Lie(Stab(∆̂W
G )) = stab(∆̂W

G ).

Proof. The first statement is obtained by applying [EF0], Lemma 5.1 where v = ∆̂W
G

and the second one comes from the fact that the Lie algebra action of (L̂ib(X), 〈·, ·〉) on

MorQ

(
ŴQ
G ,
(
ŴQ
G

)⊗̂2
)

given in (4.11) is the infinitesimal version of the group action of

(G(k〈〈X〉〉),⊛) on Mork−mod

(
ŴG,

(
ŴG

)⊗̂2
)

given in (2.28), for any Q-algebra k. �

Corollary 4.3.4. stab(∆̂M
G ) ⊂ stab(∆̂W

G ) (as Lie subalgebras of (L̂ib(X), 〈·, ·〉).
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Proof. It follows from Theorem 2.4.1 thanks to Propositions 4.3.3 and 4.2.3. �

4.4. The stabilizer Lie algebra stab(∆̂W
G ) in Racinet’s formalism.

Proposition-Definition 4.4.1. For ψ ∈ L̂ib(X), we denote γdYψ the derivation of

Q〈〈Y 〉〉 given by

(4.13) γdYψ := ̟−1 ◦ γder
W ,(1)
ψ ◦̟

where γder
W ,(1)
ψ is as in Proposition-Definition 4.3.2 and ̟ : Q〈〈Y 〉〉 → ŴQ

G is the Q-

algebra isomorphism of Corollary 2.1.8(a). There is a Lie algebra action of (L̂ib(X), 〈·, ·〉)
on Q〈〈Y 〉〉 by derivations given by

(4.14) L̂ib(X) −→ DerQ−alg(Q〈〈Y 〉〉), ψ 7−→ γdYψ

Proof. One can prove that the assignment k 7→ Autk−alg(k〈〈Y 〉〉) is a Q-group scheme
with Lie algebra DerQ−alg(Q〈〈Y 〉〉). Thanks to Proposition-Definition 3.2.1, the map

(G(k〈〈X〉〉),⊛) → Autk−alg(k〈〈Y 〉〉), Ψ 7→ ΓautYΨ is a morphism of Q-group schemes
from k 7→ (G(k〈〈X〉〉),⊛) to the latter k 7→ Autk−alg(k〈〈Y 〉〉). It is related to the

morphism of Q-group schemes Ψ 7→ Γaut
W ,(1)
Ψ of Proposition-Definition 2.3.2 by (3.7).

It follows that the corresponding Q-Lie algebra morphism takes ψ ∈ L̂ib(X) to the
right hand side of (4.13). The statement then follows from (4.13). �

For any ψ ∈ L̂ib(X), the derivation γdYψ can be expressed in the formalism of [Rac]
as follows

Proposition 4.4.2. For ψ ∈ L̂ib(X) and (n, g) ∈ N∗ ×G we have

(4.15) γdYψ (yn,g) = qY

((
ψxn−1

0 −xn−1
0 tg(ψ)

)
xg

)
+qY

((
xn−1
0 γψ(xg)−γψ(x1)x

n−1
0

)
xg

)
.

Proof. The infinitesimal version of the identity in Proposition 3.2.3 is given by

γdYψ (yn,g) = qY

((
(−γψ(x1) + ψ)xn−1

0 + xn−1
0 tg(γψ(x1)− ψ)

)
xg

)
.

Identity 4.15 then follows. �

From Proposition 4.4.1, we define a Lie algebra action of (L̂ib(X), 〈·, ·〉) on the space

MorQ

(
Q〈〈Y 〉〉,Q〈〈Y 〉〉⊗̂2

)
by

(4.16) ψ ·D :=
(
γdYψ ⊗ id + id⊗ γdYψ

)
◦D −D ◦ γdYψ .

In particular, the stabilizer of ∆̂alg
⋆ is the Lie subalgebra

(4.17) stab(∆̂alg
⋆ ) :=

{
ψ ∈ L̂ib(X) |

(
γdYψ ⊗ id + id⊗ γdYψ

)
◦ ∆̂alg

⋆ = ∆̂alg
⋆ ◦ γdYψ

}
.

For a commutative Q-algebra k, recall the group Stab(∆̂alg
⋆ )(k) in (3.11). One then has

Proposition 4.4.3. The assignment Stab(∆̂alg
⋆ ) : k 7→ Stab(∆̂alg

⋆ )(k) is an affine Q-

group scheme and Lie(Stab(∆̂alg
⋆ )) = stab(∆̂alg

⋆ ).
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Proof. The first statement is a consequence of [EF0], Lemma 5.1 where v = ∆̂alg
⋆ and the

second one comes from the fact that the (L̂ib(X), 〈·, ·〉)-action on MorQ

(
Q〈〈Y 〉〉,Q〈〈Y 〉〉⊗̂2

)

given in (4.16) is the infinitesimal version of the group action of (G(k〈〈X〉〉),⊛) on

Mork−alg

(
k〈〈Y 〉〉,k〈〈Y 〉〉⊗̂2

)
given in (3.10), for any Q-algebra k. �

Corollary 4.4.4. stab(∆̂alg
⋆ ) = stab(∆̂W

G ) (as Lie subalgebras of (L̂ib(X), 〈·, ·〉).

Proof. It follows from Theorem 3.2.4 thanks to Propositions 4.4.3 and 4.3.3. �

Finally, in Racinet’s formalism, this translates to:

Corollary 4.4.5. stab(∆̂mod
⋆ ) ⊂ stab(∆̂alg

⋆ ) (as Lie subalgebras of (L̂ib(X), 〈·, ·〉).

Proof. It immediately follows from Corollary 4.3.4 thanks to Corollaries 4.2.4 and 4.4.4.
�
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