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THE CYCLOTOMIC DOUBLE SHUFFLE TORSOR IN TERMS OF

BETTI AND DE RHAM COPRODUCTS

YADDADEN KHALEF

ABSTRACT. In order to describe the double shuffle and regularization relations be-
tween multiple polylogarithm values at N roots of unity, Racinet attached to each
finite cyclic group G of order N and each group embedding ¢ : G — C*, a Q-scheme
DMR* which associates to each commutative Q-algebra k, a set DMR*(k) that can be
decomposed as a disjoint union of sets DMR (k) with A € k. He also exhibited a Q-
group scheme DM RS and showed, for any commutative Q-algebra k and any A € k*,
that DMRY (k) is a torsor for the action of DMRS (k). Then, Enriquez and Furusho
showed for N = 1 that a subscheme DMRY, of DMR" is a torsor of isomorphisms re-
lating “de Rham” and “Betti” objects. In previous work, we reformulated Racinet’s
construction in terms of crossed products and identified Racinet’s coproduct with a
coproduct ﬁg’DR defined on a module /\781‘ over an algebra WER, which is equipped
with its own coproduct ﬁ‘g’DR. In this paper, we define the main ingredients for a
generalization of Enriquez and Furusho’s result to any N > 1: we exhibit a module
./(/l\]% over an algebra )7\)\]% and we prove the existence of two compatible coproducts
ﬁy’B and ﬁfVA’B on )7\/\]% and ./(/l\]% respectively such that DMRY, is contained in the
torsor of isomorphisms relating AK,V’B (resp. ﬁﬁ’B) to ﬁ‘é\}’DR (resp. ﬁgA’DR).
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INTRODUCTION

A multiple L-value (MLV in short) is a complex number defined by the following
series

k1 kr
Z ---Z
— 1
Ly, o) (21500, 20) 1= E . "
myt e emy”
0<my <---<myr 1 r
where 7, k1,..., k. € N* and z1,...,2 in uy the group of N* roots of unity in C,

where N is an integer > 1. This series converges if and only if (k;, 2,) # (1,1). These
values satisfy a set of algebraic relations; our main interest here are the double shuffie
and regularisation ones.

Understanding the double shuffle and regularisation relations has been greatly im-
proved thanks to Racinet’s work [Rac]. He generalises the group uy to a finite cyclic
group G and attaches to each pair (G, ¢) of a finite cyclic group G and a group injection
t: G — C*, a Q-scheme DMR* which associates to each commutative Q-algebra k, a
set DMR*(k) that can be decomposed as a disjoint union of sets DMR} (k) for A € k (see
[Rac, Definition 3.2.1]). The double shuffle and regularisation relations on MLVs are
then encoded in the statement that a suitable generating series of these values belongs
to the set DI\/IR?;C;T"(C) where teqn : G = uy — C* is the canonical embedding. Racinet
also proved that for any pair (G, ¢), the set DMRj (k) equipped with the “twisted Mag-
nus” product (see (LI3))) is a group that is independent of the choice of ¢. It is therefore
denoted DMRY (k).

The main result of Racinet in [Rac, Theorem I] is that, for each pair (\,¢) where
A€ k¥ and ¢ : G — C*, the set DMR} (k) is equipped with a torsor structure for
the action of the group (DMR§ (k),®). For any ¢« : G < C*, this yields a torsor
structure on the set DMR’, (k) := |_| DMRY} (k) for the action of a semidirect product

ek
group k* x DMR§ (k) (see Proposition [L3I0). This gives rise to a torsor structure on
DMR (k) := |_| DMRY, (k) (where ¢ runs over all group embeddings from G to C*) for
L

the action of the semidirect product group (Aut(G) x k*) x DMR§ (k) (see Proposition
TZ13).

On the other hand, we introduced in [Yad| a crossed product formalism and showed
that Racinet’s objects can be expressed within it. This constitutes the “de Rham?”
side of the double shuffle theory. In this framework, the crossed product algebra is
identified to a topological k-algebra 98R defined by a presentation with generators and
relations (see Proposition [LT]). Next, Racinet’s objects are given in the form of a
subalgebra W\GDR of 17813‘ and a quotient module ./\//\lgR of the left regular lAigR—module.

The algebra W\gR is equipped with a Hopf algebra coproduct AEV’DR
M\DR AM,DR
G be. .

and the module
is equipped with a compatible coalgebra coproduct

Following the stabilizer interpretation of DI\/IROG (k) given by Enriquez and Furusho in
[EE0], we defined two stabilizers Sta b(ﬁgt’DR)(k) and Sta b(ﬁé\/’DR)(k) for the action of
grouplike elements equipped with the twisted Magnus product and therefore obtained
the following chain of inclusions

DMR§ (k) C Stab(A%"PR)(k) c Stab(AYPR)(k),
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which is a generalisation of the G = {1} result of [EF2, Theorem 3.1]. This enables us
to obtain the following semidirect product group chain of inclusions

Result I (Corollary 2.2.9]).

(Aut(G) x k*) x DMRS (k) € (Aut(G) x k*) x Stab(A5"P™) (k)
N
(Aut(G) x k*) x Stab(A% PR (k)

For G = {1} Enriquez and Furusho introduced a “Betti” formalism of the double
shuffle theory in [EFT]. It is based on the filtered algebra VB, which denotes the group
algebra over k of the free group of rank 2 denoted F5 with generators Xy and X; and
equipped with the filtration induced by the augmentation ideal. The completion VB is
a topological k-algebra. Next, we have a Hopf algebra (17\/\8, KW’B) which consists of a
subalgebra WB of VB linearly generated by 1 € VB and the left ideal generated by X;—1.
It is presented as an algebra with generators X7, X; 1, Y,;F = —(Xg — 1)1 Xo(X; — 1)
and Y, = —(X; ' —1)" "1 X, H(X P -1) for n € N*, with relation X; X, ' = X_; X; = 1.
In addition, we have a Hopf algebra coproduct AWB B ()7\78)®2 given by

AWB(x{) = X' @ Xif! and for n € N, AVB(YVF) =VEel+10Vi+ ) viev®

k,leN*
k+l=n

Finally, we have a coalgebra (.//\/\(B, AM’B) which consists of a quotient module MB =
VB /VB (X, — 1) isomorphic to W8, as a k-module (see [EF1L (2.1.1)]) together with a
coalgebra coproduct AMB compatible with the coproduct AWB,

In §3 we construct analogues of the Hopf algebra ()7\/\8, KW’B) and of the module-
coalgebra (M\B,AM’B), for a finite cyclic group G of order N. It is based on the
filtered algebra VE,, which denotes the group algebra kF5 equipped with the filtration
induced by the ideal ker(kFy — kuy); where kFy, — kuy is the algebra morphism
induced by the group morphism F, — uy given by Xg — N and Xy — 1. Its
completion is the inverse limit of the projective system induced by the filtration and is
denoted 9]]\3, It is a topological algebra isomorphic to 98R (see Proposition-Definition
BI8). Next, we define a filtered algebra W]]\gf which is linearly generated by 1 € V]%
and the left ideal generated by X; — 1 and whose filtration is induced by that of V]]\B,.
Its completion )7\7]% is isomorphic to W\gR (see Proposition-Definition BI.T5]). We also
define a filtered module MY which consists of the quotient module kFy/kFs(Xo — 1)
and whose filtration is induced by that of V]%. Its completion ./(/l\]% is isomorphic to
./\//TgR (see Proposition-Definition B.1.25]). We then have compatible Hopf algebra and

coalgebra structures on V/\Z% and /(/l\]% respectively thanks to the following result:

Result II (Theorem B2 and Corollary B.2:6l). There exists a topological k-algebra
morphism AW’B : W\]% — ()7\7]%)®2 and a topological k-module morphism A%B :
./(/l\]% — (.//\/\(]%)@2 that endows )7\/\]% and ./(/l\]% respectively with compatible Hopf alge-
bra and coalgebra structures.

Finally, in §4], we deduce the following result:
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Result III (Theorem[4.2.1]). DMRy is contained in the torsor of isomorphisms relating
AW’B (resp. A%’B) to AEV’DR (resp. Ag(’DR).

Acknowledgements. The author is grateful to Benjamin Enriquez for the helpful
discussions, ideas and careful reading.

Notation. Throughout this paper, G is a (multiplicative) finite cyclic group of order N
and k is a commutative Q-algebra. For a k-algebra A, an element x € A and a left
A-module M we consider:

e/, : M — M to be the k-module endomorphism defined by m +— zm and if x is
invertible, then ¢, is an automorphism.

er, : A — A to be the k-module endomorphism defined by a — ax and if x is
invertible, then r, is an automorphism.

e Ad, : A — A to be the k-algebra automorphism defined by a — zaz—! with x € A.

0. SOME CATEGORIES OF ALGEBRA-MODULES

First, let us recall various categories introduced in [EF4] that will be used throughout
this paper:

e k-mod is the category of k-modules.

e k-alg is the category of k-algebras.

e k-alg-mod is the category of pairs (4, M) where A is a k-algebra and M is a left
A-module.

e k-coalg is the category of coassociative cocommutative coalgebras over k.

e k-Hopf is the category of Hopf algebras over k.

e k-HAMC is the category of Hopf-Algebra-Module-Coalgebras where objects are pairs
((A, AN, (M, AM)) where (A, A4) is a Hopf algebra and (M, AM) is a coalgebra such
that
» The pair (A4, M) is an algebra-module.

» For (a,m) € A x M, we have AM(am) = A4 (a)AM (m).

e k-mod,p, is the category of topological k-modules with objects pairs (M, (F'M);en),
where M is a k-module and (F'M);cy is a decreasing filtration of M such that
the map M — @M/F’M is a k-module isomorphism, i.e. M is complete and

separated for the topology defined by the filtration (F*M);cn. It is equipped with a
tensor product &, with respect to which it is a symmetric tensor category.

e k-alg,,, is the category of topological k-algebras. i. e. algebras in the category
k-modp, in the sense of [McL].

e k-alg-mody, is the category of topological k-algebra-modules. i. e. k-algebra-
modules in the category k-modyep in the sens of [McL].

e k-coalg,, is the category of topological k-coalgebras. i. e. coalgebras in the category
k-modyep in the sens of [McL].

e k-Hopf,, is the category of topological k-Hopf algebras. i. e. Hopf algebras in the
category k-modyp, in the sens of [McLl.

o k-HAMC,, is the category of topological Hopf-Algebra-Module-Coalgebras. i. e.
Hopf-Algebra-Module-Coalgebras in the category k-modyp, in the sens of [McL].
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Finally, let C be a symmetric tensor category and O an object of C. We define
Cope(O) to be the set of morphisms D : O — O%®2. One checks that the group
Aut¢(0O) acts on Cope(O) by

(0.1) a-D:=a®?0Doa™t,
with o € Aute(O) and D € Cop(O).

1. THE DOUBLE SHUFFLE TORSORS

In this section, we recall the various double shuffle torsors arising from Racinet’s work
in [Rac]. In §I.11 we recall the basic framework of Racinet’s formalism. Namely, two
Hopf algebras (k((X)),A) and (k((Y)), A¥¢), a coalgebra (k((X))/k((X))zq, Amed)
and a group (G(k((X))),®). Additionally, we also recall the basic material of the
crossed product formalism introduced in [Yad] which consists of an algebra 17813‘ and its
relation with a Hopf algebra (W\DR, ﬁév’DR) isomorphic to the Hopf algebra (k((Y)), ﬁilg)
and a coalgebra (.//\/TBR, ﬁgt’DR) isomorphic to the coalgebra (k((X))/k((X))zq, Amod).
In §T.2, we introduce the double shuffle set DMRj (k) for A € k and ¢ : G — C* an
injective group morphism, which is a torsor over the double shuffle group DI\/IR(? k), a
subgroup of G(k((X))),®) ([Rac]). In §I.3] we define a set DMRY, (k) = |_| DMR (k)

ek
and show that it is a torsor for a group given by a semidirect product arising from an

action of k*. Finally, in §I.4, we define a set DMR (k) = |_| DMRY, (k) where ¢ runs

over all injections G — C* and show that it is a torsor for a group given by semidirect
product arising from an action of Aut(G) x k*.

1.1. Preliminaries.

1.1.1. Basic objects of Racinet’s formalism. Let k((X)) be the free noncommutative
associative series algebra with unit over the alphabet X := {zo} U {z4|g € G}. Tt is
complete graded with deg(zg) = deg(zy) = 1 for ¢ € G. This algebra provides an

object in k-Hopf,,, when equipped with the coproduct A k(X)) — k<(X>>®2, which
is the unique topological k-algebra morphism given by ﬁ(xg) =1,®1+1® x4, for
any g € GU{0} ([Rac, §2.2.3]). Let then G(k((X))) be the set of grouplike elements of
k((X)) for the coproduct A, i.e. the set

(1.1) G(k((X))) = {¥ € k(X)) | A(¥) = ¥ @ ¥},
where k((X))* denotes the set of invertible elements of k((X)). Since (k({X)),A) is a
Hopf algebra, G(k((X))) is a group for the product of k((X)).

The group G acts on k((X)) by topological k-algebra automorphisms by g — t,g,

where for any g € G, the topological k-algebra automorphism ¢, is given by t,(zg) =
xo, tg(xp) = g for h € G ([Rac, §3.1.1]). For any g € G, we have

(1.2) Ao tg = t;®2 o 3,

this can be verified by checking this identity on generators since both sides are given as
a composition of k-algebra morphisms. As a consequence, for any g € GG, the k-algebra
automorphism ¢4 : k((X)) — k((X)) restricts to a group automorphism of G(k((X))).
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Let q be the k-module automorphism of k({X)) given on the topological k-module
basis (xglxglxgmx{n e xgrxgrxgrﬂ)r,n17---7nr+1€N of k<<X>> ([Rac, §2-2-7D by
917"'7gT€G

n
Y =a(trgxfte, —1-xiTr, 1 X

n1 n2 el n
q(xo Lg1Ly Lgy Lo Lg,Lg 9297 9r9,_1

For (n,g) € Nugx G, set yn = 20 ‘2, Let Y := {yn4|(n, g) € NugxG}. We define
k{({Y)) to be the topologically free k-algebra over Y, where for every (n,g) € Nsg x G,
the element y,, 4 is of degree n. One shows that k((Y)) is equal to the k-subalgebra
k & P k((X))z, of k(X)) ([Rac, §2.2.5] and [EF0, §2.2)).

gelG X

Let A28 k((Y)) = (k({Y)))®? be the unique topological k-algebra morphism such

that for any (n,g) € Nyg x G

n—1

(1'3) 3ilg(yn,g) = Yn,g ®1+1® Yn,g + Z Yk,h ® Yn—k,gh—1-
hed

The element A € Copk ag,,, (k((Y))) is called the harmonic coproduct ([Racl §2.3.1])

and the pair (k((Y)), A?8) is an object of k-Hopf,,.

Let us consider the topological k-module quotient k((X))/k{{(X))xg. The pair
(k((Y)), k{((X))/k({(X))xo) is an object of the category k-alg-mody,p. The restriction
to k({(Y)) of the projection morphism my : k{({(X)) — k{({X))/k((X))z( is an isomor-
phism, therefore k((X))/k{(X))x is free of rank 1 over k{(Y)). It follows that there
is a topological k-module morphism Amed ¢ CoPk-mod,o, (K({(X))/k{(X))x0) uniquely
defined by the condition that the diagram

Ae

k((Y)) > k((Y))®2

(1.4) % lﬂgz

(X)) KU 0 — s k(X)) /(X)) a0) 2

commutes. The pair (A%, A7d) is an element of Copyalg-modes, (K((Y)), k(X)) /K((X))x0).
The pair (k((X))/k{(X))zo, Am°d) is an object of k-coalgy,,, and the pair ((k((Y)), N}
(K((X))/k({X))zp, A1) is an object of k-HAMCop.

1.1.2. Basic objects of the crossed product formalism. Let 98R be the complete graded
algebra generated by {ep, e1} U G where ¢y and e; are of degree 1 and elements g € G
are of degree 0 satisfying the relations:

(i) g x h = gh; (i) 1 =1g; (ili) g x eg = €9 X g;
for any g, h € G; where “x” is the algebra multiplicatiorﬂ([Yad, §2.1.1]).

Recall that the map g + t, defines an action of G on k((X)) by k-algebra au-
tomorphisms. One then considers the crossed product algebra k((X)) x G for this

Lwhich we will no longer denote if there is no risk of ambiguity.
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action, which is the k-module k((X)) ® kG equipped with the product given for any
a,b € k((X)) and any g,h € G by ([Bou07, Chapter 3, Page 180, Exercise 11])

(1.5) (a®g)*(b®h)=aty(b) ® gh.

Proposition 1.1.1 ([Yad, Proposition 2.1.3]). There is a unique k-algebra isomor-
phism B : k((X)) x G — VR such that 29 ® 1+ ey and for g € G, 1,® 1 — —gejg~?!
and 1® g g.

Let WgR be the complete graded k-subalgebra of 17813” given by
(1.6) WgR =k @ VoRe,.
It is freely generated by the family
Z = {2ng = —ei""ge1| (n, 9) € Nsg x G,

with deg(zp4) = n ([Yad, Proposition 2.1.5.(b)]). As a consequence, there is a unique
k-algebra isomorphism w : k((Y)) — W\gR given for (n,g) € Nsg X G by yp g — 2ng-

One then has a unique topological k-algebra morphism ﬁév’DR : WGDR — (W8R)®2
such that for any (n,g) € Nyg x G

n—1
AW,DR
(1.7) A (zng) = 2ng®1+ 1@ zng + Z Zk,h & Zp—k,gh=1-
k=1

heG
The coproduct ﬁév’DR is an element of Copy g, (WGDR). The pair (WDR, AEV’DR) is
an object in the category k-Hopf,,, and the k-algebra isomorphism @ : k((Y)) — WgR
is an isomorphism between the Hopf algebras (k((Y)), A¥8) and (WGDR, KZV’DR).
Let /(/l\gR be the complete graded k-module given by

M\BR = AER/ (ﬁGDReO + Z 98R(g — 1))

geG

Let 1pr be the class of 1 € lAigR in //\/\lgR. The map — - 1pr : 17813” — //\/\lgR is

a surjective k-module morphism with kernel lAigReo + Z lAigR(g —1). In addition,
geG

the pair (ﬁgR,A//TgR) is an object in the category k-alg-mody.,. Moreover, one de-

duces from [Yad, Proposition 2.1.6] that there is a unique k-module isomorphism

K k{(X))/k{({(X))xo — //\/\lgR determined by the commutativity of the diagram

Bo(=®1) 5
k(X)) Vot

(1.8) ﬂyoql i*'lDR
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On the other hand, the following diagram
k((Y)) = Wt
(1.9) ﬂyl Cpm
k(X)) /k (X))o ———— MBR

commutes ([Yad, Corollary 2.1.8]). As a consequence, the map — - 1pg : W\GDR — ./\//\lgR
is a k-module isomorphism since all other arrows of Diagram (L) are isomorphisms.
In addition, we obtain the following result

Lemma 1.1.2. The pair (WgR, X,TgR) is an object of the category k-alg-modiep. More-
XZ%R WgR—module of rank 1.

over, 1s free

Proof. The first statement follows from the fact that (WgR, X,TgR) is the pull-back of
the k-algebra-module (fiDR, ./\//TgR) by the k-algebra morphism W\gR — )A/GDR.

The second statement comes from the fact that k((X))/k((X))zo is a free k((Y))-
module of rank 1 thanks to the commutativity of Diagram (L.9). O

This enables us to construct a topological k-module morphism ﬁé/l’DR € Copk_modtop (./T/(\BR)

uniquely defined such that the following diagram

DR Agt SDR\&2
We > (Wg™)
(1.10) _'IDRi l"lg;
DR AghPH . ({ AJDR\&2
Mg > (Mgh)

commutes, thanks to Lemma [[.L1.2] and the free rank 1 property of the W\gR—module
./\//\lgR. The pair (/\//\lgR,Agt ’DR) is an object in the category k-coalg,, and the k-
module isomorphism x : k((X))/k{({X))zy — ./\//\lgR is an isomorphism of coalgebras
A m A M,DR

(X)) /KX)o, Aped) and (MR, AZHPH).

. (AW, DR RM,DR) .
Lemma 1.1.3. The pair <AG A ) is an element of COPy_alg-modsop (W\DR, /\//\lgR>.
Proof. Let w € WgR and m € ./\781?{_ Thanks to Lemma there is a unique
w' e WgR such that m = w’ - 1pg. We have
AP (w e m) = AR (we' - 1pr) = Ag (wu') 15 = Ag™H (@) Ag P () - 15R

AW,DR AM,DR AW,DR AM,DR
= AL (w)AL (W - Ipr) = AL (w)AG T (m),

where the second and fourth equalities come from the commutativity of Diagram (L10).
O

As a consequence, the pair <()7V\DR, AEV’DR), (./\//TgR, ﬁg’DR)) is an object of k-HAMC;,.
In addition, the pair

() = (kD). AT), (k((X))/K(X)) w0, Ao) ) — (WER, ARPR), (MER, AFP™)
is a morphism of objects of k-HAMC;,p,.
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1.2. The torsor DMRj (k). Let us denote k((X)) — k{verdsinzo.(zo)occ} o s ((vfw))
the map such that v = ) (v|w)w (the empty word is equal to 1).
Let T : k((X)) — k[[z]]*, ¥ +— Iy the function given by ([Rac, (3.2.1.2)])

(=)"! ~1
(1.11) Dy(x) := exp ZT(mmg z1)z"

n>2

Definition 1.2.1 ([Rac, Definition 3.2.1]). Let A € k and ¢ : G — C* be a group
embedding. We define DMR (k) to be the set of ¥ € G(k((X))) such that
2

(i) (¥]zg) = (V]z1) = 0; (iii) If |G| € {1,2}, (V]|zox1) = —%;

-~

(i) AFeL(W,) = U, @ W (iv) 1 1G] 2 3, (Wley, — 7,1 ) = 1920

2
G|—-2k
(v) For k € {1,...,]G|/2}, (\1/|ng —ng_k) L (xm% —ng_l),
i2n

where g, ;=1 71(e/¢!) and U, := 1y o q (T'g' (z1)¥) € k{({X))/k{(X))xo.

Remark 1.2.2.

(i) Thanks to [Rac, §3.2.3], DMR (k) is a non-empty set.
(i) If |G| € {1,2}, the embedding ¢ is unique.

Proposition-Definition 1.2.3 ([Rac, Remark 3.2.2]). For A =0, the conditiorl]
of Definition[I.21] does not depend of the choice of .. The set DMRy(k) is then denoted
DMRY (k) instead.

Proposition 1.2.4. Condition of Definition [.21] is equivalent to
(1.12) AMPR(p*) — w* @ W,
where U* := (I’E,l(—el)ﬁ(\lf ®1))-1pr € ./\//TgR.

Proof. Thanks to Diagram (L.g]), it follows that x(¥,) = U*. Equality (I.I2]) then fol-
lows from the fact that & : (k((X))/k{({X))zo, ATd) — (/qu, Agt’DR) is a coalgebra
isomorphism. O

~

Recall the set G(k((X))) of grouplike elements of (k{((X)),A) given in (LI). In
addition to its usual group structure, it is also a group for the “twisted Magnus”
product denoted ® and given for any ¥, ® € G(k((X))) by

(1.13) U ® &= Vauty(P),

where auty is the topological k-algebra automorphism of k((X)) given by ([EF0], §4.1.3
based on [Rac], §3.1.2)

(1.14) To — To and for g € G, 24 — Adtg(qul)(xg).
Proposition 1.2.5 ([Rac, Theorem I}). Let A € k and v : G — C* be a group embed-
ding.

(i) The pair (DMRS (k),®) is a subgroup of (G(k((X))),®).

2This function is related to the classical gamma function as established in [Full], page 344 thanks

to [Dri90].
3This also holds for condition [(v))
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(i) The group (DMRS (k),®) acts freely and transitively on DMRY (K) by left multi-
plication ®.
1.3. The torsor DMRY (k).
1.3.1. Action of the group k* on k((X)). The group k* acts on k((X)) by k-algebra
automorphisms by
(1.15) k™ — Autiag(k((X))); Ar— Ao —:xy— Az, for g € GU{0}.

One checks that, for any A € k*, the automorphism A e — is a Hopf algebra automor-

o~

phism of (k((X)),A). In addition, for any A € k* and any g € G, we have
(1.16) (Ae—)oty=tso(re—),

this can be verified by checking this identity on generators since both sides are given
as a composition of k-algebra morphisms.

Proposition 1.3.1. For any A € k*, the map X ¢ — : k((X)) — k((X)) restricts to a
group automorphism of (G(k{((X))), ®).

In order the prove this, we will need the following Lemma:
Lemma 1.3.2. For any (A\,¥) € k* x G(k((X))), we have
(1.17) (Ao —)ocauty = autyey o (A e —).

Proof. Let (A

, ) € k* x G(k((X))). Since all the morphisms are algebra automor-
phisms of k((X)

), it is enough to check this identity on generators. We have
(Ao —)oauty(xry) = Nexyg = Arg = Nautrey (7o) = autrey (Azo) = aut ey (A @ z¢)
and for g € G,
(N o —) o autu(zg) = (Ao —) 0 Ady, (g1 (2g) = Adyar, a1y (A 0 2)
= Ady, (rew-1)(A 0 7g) = autrew (A @ zg),

where the third equality comes from Identity (L.16]). O

Proof of Proposition [L31 Let A € k*. Since A @ — is a Hopf algebra automorphism
of (k({(X)),A), it restricts to a map G(k((X))) — G(k((X))). Let ¥, ® € G(k((X))).
We have

Ao (U@P)= Ao (Vauty(P)) = (Ae W) (\eauty(P))
=(AeU)autyep (A0 D)= (Ao V) ® (Ao D),

where the third equality comes from Lemma This proves that \ e — is a group
endomorphism of (G(k((X))),®). Finally, one has that (A e —)"! = A\~! ¢ — and the
above computations shows that (A e —)~! is an endomorphism of (G(k{(X))),®) thus
proving the statement. O

Proposition [[3.1] enables us to define the following:
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Definition 1.3.3. We denote k* x G(k((X))) the semi-direct product of k* and
G(k((X))) with respect to the action given in Proposition L3Il It consists of the
set k* x G(k((X))) endowed with a group law which will also be denoted ® and we
have for (A, ¥), (v, ®) € k* x G(k((X))),

(1.18) A\ ® (1, @) = (A, T ® (Ao ®)).

1.3.2. Action of the group k* on crossed product algebras and module. The group k*
acts on VgR by k-algebra automorphisms by

(1.19) k* — Autk_alg(ﬁém); A—> ey —ie; > Nej; g— g, fori € {0,1} and g € G.

Lemma 1.3.4. Let A € k*.
(i) The following diagram

Ae—

k{(X)) ——— k((X))
(1.20) ﬁo(—®1)l LBO(_@D
ﬁgR Aoy, — ﬁDR
commutes.
(i) For ¥ € k{((X)), we have
(1.21) Thew(—e1) = Aoy Ty(—e1).

Proof.

(i) Since all arrows are k-algebra morphisms, one easily checks the commutativity
of generators.
(i) Tt follows from the fact that, for n € N+g, we have (\eW|z0 " tay) = X (U|zd ;).

0

Lemma 1.3.5. Let A € k*.

(i) The k-algebra automorphism \ ey, — of 17GDR restricts to a Hopf algebra automor-
phism )\ ey, — of (W\DR, AEV’DR).
(i) The k-algebra automorphism \ ey — of VgR induces a coalgebra automorphism

Nep — of (MBR,ALHPY).
Proof.

(i) For (n,g) € Nsg x G we have

Aoy 2,0 = Aoy (el tger) = —A"el T ger = Nz
i JADR .
Since the algebra Wg™ is freely generated by (2n.4)(n,g)ensoxq> it follows that
Aey (WgR) C WgR. Similarly, (\ ey —)_1(17V\8R) C WgR. Hence, \ ey, (WgR) =
VVER. This implies that \ ey, — restricts to a k-algebra automorphism A ey — of
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W\gR and that the following diagram
e Aew— WD
WGR w WGR
(1.22) j j
~ Aoy — ~
POR v pon

commutes. Let us show that the following diagram
Aoy —
W\GDR w WER
(1.23) Eév,DRl lﬁév,ma

~ ()\. 7)®2 ~
(Vg == (A2

commutes. Indeed, for (n,g) € Ny x G we have

ﬁév’DR o (Aeyw —)(zn4) = 3EVDR()‘nZn,g) = )‘nﬁngR(zn,g)
n—1
= N2 ® L+ 1@ X200 + A D 2 4h) @ Znekgh1)

k=1
heG

n—1

= ()\ L3V, ,)®2 (Zn,g RT1+1R® Zn,g + Z Zkh @ zn_k,g;fl)

k=1
heG

= Aoy —)®2 o AEV’DR(Zn,g).

(ii) One checks that \ey,— preserves the submodule V3%eq + > VOR(g — 1). It follows
geG
that there is a unique k-module automorphism \ e, — of /(/l\gR such that the
following diagram

DR Aoy — . VDR
Ve r Vg
(1-24) *'1DR\L lf'lDR
e —
j@gR M j@gR

v

commutes. Since \ ey — restricts to the automorphism A ey, — of , we obtain

the following commutative diagram
W\GDR Aoy — JWDR

(1.25) —-1DR\L l_'lDR

v RN v
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We then have the following cube

MDR Ao MR
—1pr
JADR Aoy — . IADR
WG 7 WG
AéA,DR BGM,DR
AW,DR W, DR
AG g AG hd
A /DR\&2 . ( AMDR\&2
(Mg™) — 3 » (Mgh)
_.% (Aor—) /
2
~ ~ _lgR

Aoy —)®?

wg)2 > g
The left and the right faces are exactly the same square, which is commuta-
tive since it corresponds to Diagram [[LTOl The upper side commutes thanks to
Diagram (L25) and the lower side is the tensor square of the upper side so is
commutative. Finally, [(1)| gives us the commutativity of the front side. This col-
lection of commutativities together with the surjectivity of — - Ipg implies that
the back side of the cube commutes, which proves that A ex; — is a coalgebra
automorphism of (./\//TgR, Aé/l’DR).

O

Proposition 1.3.6. Let A € k*.

(i) The pair (X ey, — X e —) is an automorphism of (17GDR,
k-alg-modiop -

(11) The pair (\eyy—, \erq—) is an automorphism of((WDR, ﬁé\)’DR), (/qu, KéA’DR))
in the category k-HAMCqp.

Proof.
(i) Let (v,m) € 17813‘ X ./\//TgR. Since — - 1Ipg : 178R — //\/\lgR is surjective, there exist
v € VOR such that m =o' - Ipg. We have

/(/l\gR) in the category

Aepg(vm) = Aoy (v0' - 1pr) = (A ey vv') - Ipr = (A ey v) (A ey ') - Ipr
=(Aepv)(Neym),

where the second and fourth equalities come from the commutativity of Diagram

(@L.24).
(ii) It follows from |(i)| and from Lemma

1.3.3. The torsor DMRY (k).

Proposition 1.3.7. For any A € k*, the map X e — : k((X)) — k{((X)) restricts to a
group automorphism of (DMRS (k), ®).
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Proof. Tt follows from Proposition [L3.T] that (A @ —)| g ((x)y) is a group automorphism
of (G(k{((X))),®). It remains to prove that this permutation of G(k((X))) induces a
permutation of its subset DMRS (k). Let A € k* and ¥ € DMR/ (k). Since Aoz = Azg
and \ ez, = Ay for g € G, Conditions and of Definition [[LZ.1] are
immediately satisfied by A ¢ W. In order to prove that Condition is satisfied, let us
use Proposition [[2.4l We have
Ao W) = (I}, (—e1)B(A e T ®1)) - Ipr = (A ey Iy (—e1)) (A oy B(T ®1))) - Ipr
= Aoy (T (—e1)B(¥ ®1))) - Ipr = Aepq (Ty'(—e1)B(¥ @ 1) - 1pR)
(1.26) = Aep ¥,
where the second equality comes from the commutativity of Diagram ([L20)) and Identity
(CZ1)), the third one from the fact that A ey, — is an algebra morphism and the fourth
one from Lemma Therefore, we obtain that
KJC\;A’DR(()\ . \I/)*) _ AéthR()\ Y \I/*) _ ()\ o _)®2 ° z'gl’DR(\I/*)
= (Ao —)P2((T)F2) = (Ao U7
— (e W) @ (Ao W),
where the first and last equalities come from (26, the second one from Lemma
and the third one from Proposition [LZ4] and the fact that ¥ € DMR§ (k). This
proves that \ e — restricts to a self-map of DI\/IR(? (k). Following the same steps, one
shows that (A e —)~! = A\~! e — restricts to a self-map of DMRS (k) thus proving the
statement. O

Proposition [[L3.7] enables us to state the following definition:

Definition 1.3.8. We denote k* x DMR§ (k) the semi-direct product of k* and

DI\/IR(? (k) with respect to the action given in Proposition [[3.7] It is a subgroup of
k* x G(k((X))).

Definition 1.3.9. Let ¢ : G — C* be a group embedding. We define
(1.27) DMR (k) := {(\, V) e k* x G(k{((X)))| ¥ € DMR}(k)}.

Proposition 1.3.10. Let 1 : G — C* be a group embedding. The group k* x DMRY (k)
acts freely and transitively on DMR (k) by left multiplication ®.

In order to prove this, we will need the following Lemma:

Lemma 1.3.11. Let ¢t : G — C* be a group embedding and \,v € k*. If ® € DMR},(k)
then Av—! o ® € DMR (k).

Proof. Let ® € DMR!, (k). Since Av~lezy = A\v"lzgand \v~tex, = Av~1z, for g € G,
we have

o M ltedrg) = A 1(®|zg) =0 and (Av~! @ ®|z1) = v~ H(D|z1) = 0.

o M ledlzgr) = )\21/_12(<1>|3:03:1) = —)\21/_12’5—1 = —%.

e (M led|z, — T,-1) = M@z, — T,-1) = )\V_llG‘T_QI/ = 1G22,

2
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This proves respectively conditions and of Definition [L.2.1] Condition
follows from condition Finally, one shows that Condition is satisfied by using
the same arguments as in the proof of Proposition [[.3.7] O

Proof of Proposition [[L3.10. Since the action of the group k* x G(k((X))) on the set
k* x G(k((X))) by left multiplication ® is free, so is its restriction to the action of
k* x DMRS (k) on DMRY, (k). Let us show that this action is transitive. Let (A, ¥) and
(v, ®) € DMRY, (k). Set = A\v~!. It follows from Lemma[[3.IT]that e® € DMRY (k).
Thanks to Proposition the action of the group (DMRS (k),®) on DMR (k)
is transitive, therefore, there exists A € DMRS;(k) such that A ® (u e ®) = ¥. Thus
(1, A) € k* x DMR§ (k) is such that

(M?A) ® (Vv (I)) - ()‘7 \11)7
which proves the transitivity. O

1.4. The torsor DMR (k).

1.4.1. Action of the group Aut(G) on k((X)). The group Aut(G) acts on k((X)) by
k-algebra automorphisms, the element ¢ € Aut(G) acting by the automorphism 7,
given by

(1.28) To > To, Ty Ty for g € G.

One checks that, for any ¢ € Aut(G), the automorphism 7 is a Hopf algebra automor-
phism of (k((X)),A).

In addition, for any ¢ € Aut(G) and any g € G, we have
(1.29) Ng 0 tg = tg 0 N,

which can be verified by checking this identity on generators since both sides are given
as a composition of k-algebra morphisms. Let us show that

Proposition 1.4.1. Let ¢ € Aut(G). The map ny restricts to a group automorphism
of (G(k({X))), ®)-

In order to prove this, we will need the following Lemma:
Lemma 1.4.2. Let ¢ € Aut(G), g € G and ¥ € G(k((X))). We have
(130) ’I’]¢ e} aut\p = aut%(q,) e} 77¢

Proof. Since all morphisms are algebra automorphisms of k((X)), it is enough to check
this identity on generators. We have

ng © auty (z9) = 1(0) = vo = aut,, (g)(ro) = aut,, (g) © 14(7o)
and for g € G,
Mg © auty (zg) = ng(Ads, (w-1)(g)) = Ady,  (n,(0)-1) (M6(74))
= Adry ) (g (0) 1) (Zo(g)) = By, (0) (Tg(g)) = atity, (w) © 7p(2g),
where the second equality comes from identity (.29]). O
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Proof of ProAposition [141 Let ¢ € Aut(G). Since 1y is a Hopf algebra automorphism
of (k({X)),A), it restricts to a map G(k((X))) — G(k{(X))). Let U, ® € G(k((X))).
We have
16(¥ ® @) = g (Vauty (P)) = 14(¥)ns (auty (©))
= np(¥)aut,, @) (16(P)) = 1y (¥) ® ny(P),
where the third equality comes from Lemma This proves that 74 restricts to a
group endomorphism of (G(k((X))),®). Finally, one has that nd_)l = 141 and the above

computations shows that 77;1 is an endomorphism of (G(k((X))), ®), thus proving the
statement. U

Lemma 1.4.3. For (¢,\) € Aut(G) x k*, we have
ngo(Ae—)=(Ae—)on,

Proof. Let (¢, \) € Aut(G) x k*. Since all the morphisms are algebra automorphisms
of k((X)), it is enough to check this identity on generators. We have

g o (Aexg) =1ny(Arog) = Axg = N e 29 = X @ 1g(0) = (A ® —) 0 1g(20)
and for g € G,
Ny o (Aexy) =ny(Arg) = ATgg) = A @ Ty(g) = A @ 1y(Ty) = (A @ —) 0ng(zy).

Propositions [[31] and [LZ.1] and Lemma [[.4.3] enable us to define the following:

Definition 1.4.4. We denote (Aut(G) x k™) x G(k((X))) the semi-direct product of
Aut(G) x k* and G(k((X))) with respect to the action given in Propositions [[L.3.1] and
[LZTl It consists of the set Aut(G) x k* x G(k((X))) endowed with a group law which
will also be denoted ® and we have for (¢, A\, V), (¢/, v, @) € Aut(G) x k* x G(k((X))),

(1.31) (A1) ® (¢, v,0) := (¢ 0 ¢/, v, T @ny(A e P)).
1.4.2. Action of the group Aut(G) on Emb(G). Let us denote
(1.32) Emb(G) := {t: G — C* |, is a group embedding}.

Lemma 1.4.5. The group Aut(G) acts freely and transitively on Emb(G) by
(1.33) (¢:0) 10971,
for (¢,1) € Aut(G) x Emb(G).

Proof. One knows that for any ¢ € Emb(G), «(G) = un. That gives rise to a group
isomorphism 7 : G — un(C). Therefore, for any ¢,/ € Emb(G) there is a unique group

-1
automorphism ¢ = ¢/ o7 of G such that 1o ¢~ = /. O

Corollary 1.4.6. The group (Aut(G) x k*) x G(k((X))) acts freely and transitively
on Emb(G) x k* x G(k{(X))) by

(1.34) (o, N 0) - (1,1, @) = (Lo d ', A, U @1y (N 0 B)),
for (¢, A, ¥) € (Aut(G) x k*) x G(k((X))) and (1,v,®) € Emb(G) x k* x G(k{{X))).
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Proof. Let (1,v,®),(/,v/,®') € Emb(G) x k* x G(k((X))). Thanks to Lemma [LZ.5]
there is a unique ¢ € Aut(G) such that // =10 ¢~ 1. Set

A=v '/ and U = &' @ny(\e $)®(=1),
In conclusion, there is a unique (¢, A, ¥) € (Aut(G) x k*) x G(k((X))) such that
(DN 0) - (1,1, ®) = (/,V/, P,
which proves the statement. O

1.4.3. Action of the group Aut(G) on crossed product algebras and module. The group
Aut(G) acts on VIR by k-algebra automorphisms the element ¢ € Aut(G) acting by
the automorphism 772; given by

(1.35) ep— eg, e1— e and g+— ¢(g) for g € G.
Lemma 1.4.7. Let ¢ € Aut(G). The following diagram

e

k{(X)) ——— k((X))
(1.36) ﬁo(—®1)l LBO(_@)
vgn ", ppe

commutes.

Proof. Since all arrows are k-algebra morphisms, one easily checks the commutativity
of generators. O
Lemma 1.4.8. Let ¢ € Aut(G).
(i) The k-algebra automorphism 77}; of 98R restricts to a Hopf algebra automorphism
ny of WER,AGPH).
(i) The k-algebra automorphism 772; of 17GDR induces a coalgebra automorphism 77(/;4
of (Mg, AgHPH).
Proof.
(i) For (n,g) € N5g x G we have

n—1

1 (2ng) = 0 (—eg ™ 'ger) = —eg T dlg)er = zn4y).
Since the algebra W\gR is freely generated by the family (2,,4)(n,g)en.ox s it follows
that 773;(17\/\81;{) C WgR. Similarly, (772;)_1()7\/\81;{) C WgR. Hence, 772;(17\/\81;{) =
WgR. This implies that 772; restricts to a k-algebra automorphism of WgR which
we denote 773;\) and that we have the following commutative diagram

77VV
W\GDR ® W\GDR

(1.37) j j

VER >y Vor
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Let us show that the following diagram

WGDR ny M/7GDR
(1.38) géV,DRl lﬁ\é\/ DR
(WDR)&? (ng”)** (W\GDR)®2

commutes. Indeed, for (n,g) € Ny x G we have

AW,DR w AW,DR
AT ong (zng) = Ag™ (Zng(g)
n—1

= Zng(g) O L+ 1® Zng(g) + Y Zhh @ Znpg(g)h—!

k=1
heG

n—1
= Zng(g) O L+ 1® Zng(g) + Y Zho(h) ® Zn—k,é(g)(h-1)

k=1
heG

n—1
- (ng")®2 (zmg @14+1® 24+ Z 2 @ zn,hgh—l)

k=1
heG

w AW,DR

(ii) Let ¢ € Aut(G). One checks that 773; preserves the submodule Vg%eo + >~ VER(g — 1).

geG
It follows that there is a unique k-module automorphism né\" of //\/\lgR such that the
following diagram

Vv
{3DR % . 73DR
VG [ande
(1-39) *'1DR\L lf'lDR
M
7
7 A v 2t

commutes. Combined with it gives the following commutative diagram

YUDR g’ YAUDR
WP WP
(1'40) _'1DR\L l_'lDR

7 R v/
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We then have the following cube

MBR © MR
_1
TR e VS
G ’ G
EgA,DR EgA,DR
AW,DR AW,DR
AG AG
A(DR\&2 . (MDR)®2
2 (MG ) (pM)®2 ’ (MG )
7'1%y 77¢. /
2
()2 ~1ha

wg©2 > Vg

The left and the right faces are exactly the same square, which is commutative since
it corresponds to Diagram [[.LI0l The upper side commutes thanks to Diagram (L.40])
and the lower side is the tensor square of the upper side so is commutative. Finally,
gives us the commutativity of the front side. This collection of commutativities
together with the surjectivity of — - 1pg implies that the back side of the cube
AR AMPT)
G =G :
O

commutes, which proves that név‘ is a coalgebra automorphism of (

Proposition 1.4.9. Let ¢ € Aut(G).

(i) The pair (77};, ng/t) is an automorphism Of(ﬁDR, ./\//TgR)

in the category k-alg-modyep.
(ii) The pair (772;\/,77;5\4) is an automorphism of ((WgR, ﬁév’DR), (/qu, KéA’DR)) in the

category k-HAMC,.
Proof.

i) Let (v,m) € VPR x MDBR. Since — - 1pR : VPR _, ADR g surjective, there exist
G G G G
v € VER such that m = v’ - Ipg. We have
77£4 (vm) = 77£4 (vv' - 1pRr) = ng(vv') -1pr
=y (v) ny (v') - Ipr = 1 (0) 17" (),

where the second and fourth equalities come from Lemma [T.Z.8l

(ii) It follows from |(i)| and from Lemma [[L4.8]

1.4.4. The torsor DMRy (k). Lemma sets up the following result:

Proposition 1.4.10. Let A € k. For «,// € Emb(G), the element ¢ € Aut(G) such
that ' = vo ¢ is such that ng is a bijection between DMR4 (k) and DMRS\/(k).

Proof. Since ny4 is a Hopf algebra automorphism of (k((X)), A), it restricts to group
automorphism of G(k((X))). It remains to show that 7, : DMRj (k) — DMR;Od)_I(k)
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is a bijection. Let ¥ € DMR(k). Since ¢(xg) = x¢ and ¢(z1) = x;, Conditions
and of Definition [L2] are immediately satisfied by 74(¥). Moreover, since
Giop—1 = P(g.), we have

(1@l pes =22, ) = (100 =) = (oDt —,))

o¢_1
|G| — 2
= (\I/’ng — I’g:l) = T}\

Then Identity of Definition [L2.1] follows. One checks Identity in a similar way.
Let us prove that Condition is satisfied by 74(¥). We have

(e (¥))" = <F;1(\1;)(_61)B( 16(¥) © 1)) g = (I (=e1)B(ns(¥) @ 1)) - Ipr
= (P (- 61)773;(5(‘1’ ®1))) - lpr = (773; (T3'(—e1)B(¥ ®1))) - 1pr
= (T (—e)B(¥ @ 1) - Ipgr) = ny " (T*),

where the second equality comes from the fact that n4(z1) = 1, the third one from the
commutativity of Diagram (L.36)), the fourth one from the fact that ?73;(61) = e and
the fifth one from the commutativity of Diagram (I.39). Therefore, thanks to Lemma
and the fact that ¥ € DMRj (k), we obtain that

A M,DR A M,DR A M,DR
BEPR ((na(0))*) = BEP (gt (w)) = Gry)=? (BF ()
= ()22 (¥ @ ) = 5 (U9)22 = (ng(¥))* @ (e (¥))",
which implies, by Proposition [L2.4] that condition of Definition [L2.1]is verified by

(ne(W))*. This proves that 7, restricts to a map DMRj (k) — DMR;OQSJ(k). Finally,

following the same steps, one shows that nd_)l = 141 restricts to a map DMRLAO"Y1 (k) —
DMR} (k) thus proving the statement. O

Corollary 1.4.11. For any ¢ € Aut(G), the map ng restricts to a group automorphism
of (DMRG (K), ®).

Proof. From Proposition [L4.10] it follows that for A = 0 and any ¢ € Aut(G) the map
1 restricts to a bijection from DMR§ (k) to itself. In addition, since (DMRY (k), ®)
is a subgroup of (G(k((X))),®), Proposition [[.4.1] states that this map is a group
morphism. O

Proposition [L3.7, Corollary [LZT11] and Lemma [[L4.3] enable us to state the following

definition:

Definition 1.4.12. We denote (Aut(G) x k*) x DMR§ (k) the semi-direct product of
Aut(G) x k> and DMRY (k) with respect to the group action of Aut(G)x k* induced by
Corollary [.4.11] and Proposition [L3.71 It is a subgroup of (Aut(G) x k*) x G(k((X))).

Definition 1.4.13. We define
(1.41)  DMRy (k) := {(¢, A\, ¥) € Emb(G) x k* x G(k((X))) | (\, ) € DMR! (k)}.
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Proposition 1.4.14. The group (Aut(G) x k*) x DMRS (k) acts freely and transitively
on DMRy (k) by

(1.42) (A 9) - (1,0, @) = (1o 9™, A, T @ ng(A e @),
for (¢, 2\, ¥) € Aut(G) x k* x DMRS (k) and (1,v,®) € DMRy (k).

Proof. Let (,v,®),(/,v,®") € DMR« (k). Thanks to Lemma [[LZH] there is a unique
¢ € Aut(G) such that /' = 10¢~!. Set A = v~ 1/, Since ® € DMR,(k), thanks to
Lemma [[3.11] and Proposition [LAI0] it follows that n4(\ e @) € DMRY, (k). Thanks
to Proposition the set DMRg/(k) is a torsor for the action of the group
(DMRY (k), ®). Therefore, there is a unique ¥ € DMRS (k) such that U@®n,(\e®) = &'
In conclusion, there is a unique (¢, A, ¥) € (Aut(G) x k*) x DMRS (k) such that

(Qb, )‘a \I]) : (La v, ‘I)) = (L/a V,a ‘1)/)’
which proves the statement. O

Corollary 1.4.15. The pair ((Aut(G) x k*) x DMRY (k), DMRX(k)) is a subtorsor
of ((Aut(G) x k¥) & Gk((X))), Emb(G) x kX x g(k<<X>>)).

Proof. 1t follows from Propositions [[.4.6] and [[.4.14] O

2. THE DOUBLE SHUFFLE GROUP AS A STABILIZER OF A “DE RHAM” COPRODUCT

In this section, we recall the action of the group (G(k((X))),®) on the algebra-
module (WDR, ./\//TgR) given in [Yad]. This action enables us in §2.1] to construct an ac-
tion of the group (Aut(G)xk*)xG(k((X))) on the algebra-module (WDR, ./\//TgR). This

leads us in §2.2] to define the stabilizer groups of the coproducts ﬁé\)’DR and ﬁé\;"DR.
These stabilizers are related to stabilizers arising from the action of (G(k{(X))),®),
which contain DMRS (k) thanks to [EF(0]. Thanks to the main result of [Yad], we

conclude in Corollary 2.2.5] a chain of inclusions involving the former stabilizers and
(Aut(G) x k*) x DMRS (k).

WER, MBPR).

2.1. Group actions on the algebra-module ( G

2.1.1. Actions of the group (G(k{{X))),®). For ¥ € G(k((X))), there is a unique topo-
logical k-algebra automorphism Fautg’(l) of 178R such that ([Yad, Definition 2.3.1]

eo = Ty (—e1)B(T ®1) g (T @ )Ty (—e1)
(2.1) el Hf\il(—el)el qu(—el)
g T3 ()BT ®1) g B(¥ " @ 1)ly(—ey).
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This automorphism restricts to a topological k-algebra automorphism Fautz;,\)’(l) of WgR

([Yadl, Proposition-Definition 2.3.2]). It is such that the following diagram

@R aut‘l, @R
(2.2) i i
r V,(1)
DR auty . DDR
VG 7 VG

commutes. Next, one defines the topological k-module automorphism Faut}f,’(lo) of 98R

by

(2.3) Fautv (10— autg’(l) © Tpoi(

—e1)B(¥®1)"

This automorphism induces a topological k-module automorphism Faut/\l\,/l’(lo) of ./\//TgR

such that the following diagram ([Yad, Definition 2.3.4])

R autv ,(10)
PoR PoR
(2-4) *'1DRJ/ lf'lDR
/\D Faut/\l\,/t’uo) /\D
MBE » MPR
commutes.

Lemma 2.1.1 ([Yad, Lemma 2.3.5]). For any ¥ € G(k((X))), the following pairs are
automorphisms in the category k-alg-modigp

(i) ( aut @ Fauté’(lo)) is an automorphism of (98R,17GDR).
(ii) ( aut ) aut/\l\,/l’(lo)> is an automorphism of (17DR ./\//TgR).
(i) ( auty, W, ) Fau‘cM (10 )) is an automorphism of (W (AD /(/l\gR).

The group (G(k{({(X))),®) acts on VGR by ([Yad, Proposition 2.3.3])
(2:5) (G((X)). @) — Autyh, (VEY): ¥ Tauty .

Thanks to this and the commutativity of Diagram (2.2]), the group (G(k{(X))),®) acts
on WgR by ([Yad, Proposition 2.3.3])

(2.6) (G(((X))), ®) — Auty (WR); @ +— Tauty V.

On the other hand, the action (23] induces an action of (G(k((X))),®) on V DR by
(27) (GOe((X))), ®) — At (V%) ¥ — Tauty ™.

Thanks to the commutativity of Diagram (2.4]), the action action (2.7]) induces an action
of the group (G(k((X))),®) on X,TgR by ([Yad, Proposition 2.3.6])

2.8 GKUX))), ®) — Aut'®® (MER), ¥ Taut00)
k-mod G N
Proposition 2.1.2.
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(i) The group (G(k((X))),®) acts on (VOR, VER) by
(Gk((X))),®) — Aut® (VR VRN @ (Mauty ™, Tauty ().
(ii) The group (G(k((X))),®) acts on (VOR, MBR) by
(GR((X))), ®) — Auti®) (VO M) @ (Tauty ™, TantytM?).
(iii) The group (G(k((X))),®) acts on (WBR, MBR) by

(G(k((X))),®) — AUtf{({ilg_mod(WDR,ﬂgR); U — (Faut (1) FautM (10))

Proof. This follows from Lemma Z.T.TJand the fact that (2.5]) — (2.8) define actions. [
2.1.2. Actions of the group k* x G(k((X))).

Definition 2.1.3. For (\,¥) € k* x g k (X))), we define the topological k-algebra-
V,(1) 1

(D) T ))> of <VDR, ) given by
(Faut&fi)), Tau t};%?) = ( autg’(l) Fautg’(10)> o((Ney =), (Aey —)),
with (A ey —) € Autialg,,, (VGDR) given in (LI9).

Proposition-Definition 2.1.4. For (A\,¥) € k* xG(k((X))), we deﬁne the topological
W) 1M (10)) of ( ADR)

—~

<

aut

—

module automorphism (F aut

k-algebra-module automorphism ( aut given by

()0 AUty

(Fautw’(l) FautM’(lo)> = <Fautév’(1), I18011 M, (10) )

(wy AU (Aow =), (X on —)).

It is such that the following diagrams

Fautn}‘\%)
WGDR ’ > WgR
(2.9) i j
Fautv’(l)
~ v ~
VGDR . T) VGDR
and
r,. .V,(10)
ﬁGDR aUt()\,\I/) ﬁGDR
(2'10) _'lDR\L l_'lDR
M, (10)
A /DR fau ) A (DR
Mg » Mg
commute.

Proof. From Propositions[L.3.6l/(ii )| and 2Z.1.2){(iii )| we have that the pairs (\eyy—, Aoy, —)
w (1) r, . M,10)
and ( auty, auty,
morphism in k—alg—modtop. Next, the commutativity of the diagrams follows from the
commutativity of Diagrams (L22) and (2.2 and Diagrams (IL.24]) and (2.4]). O

are morphisms in k-alg-modsp; the composition is then a



24 YADDADEN KHALEF

Lemma 2.1.5. For (A\,¥) € k* x G(k((X))), we have

(2.11) Fautfg(\l}) o(Aey —)=(Nep—)o Faut‘\fj(l).

Proof. Since both sides are given as a composition of k-algebra morphisms of )A/DR, it

is enough to verify this identity on generators. We have

Faut}\);g)()\ oy eg) = Fautf;(\l})()\eo) = )\Fauth(\;)(eo)

= ATy (—e)BAe T @1)eg SN o Ut @ 1) hew(—e1)

= (AoyTg'(—e1)) Aoy B(T@1)) Aeg (Aey BT @ 1)) (AeTy(—er))

= Aoy (T3'(—e)B(T @ 1) e BT @ 1)y (—e1))

€]
(

Vy
=Aey Fautq, €o),

where the fourth equality comes from the commutativity of Diagram (L20]) and Identity
(L21) and the fifth one from the fact that \ ey, — is an algebra morphism. Next,

Faut}\);g)()\ oyey) = Fautf;(\;)()\el) = )\Fauth(\;)(el) = )\F;}\P(—el) e1lyew(—e1)
= ()\ °y)) I’;l(—el)) ey (}\ ° qu(—el))

= Xey (Tg'(—e1) e1 Ty (—e1))

=Aey Fautg’(l)(el),

where the fourth equality comes from Identity (L2I]) and the fifth one from the fact
that \ ey, — is an algebra morphism. Finally, for g € G,
v,(1 v,(1 V,(1
Faut)\.(\l,)()\ oy g) = I1aut)\.(\1,)(g) = I1aut>\.(\1,)(g)

= Thap(—c)B(A e U@ 1) g SAe U @ 1) say(—e1)
= AepIg'(—e1)) Aoy B(T@1)) g (Aey BT L @1)) (AeTy(—e1))
= ey (03! (—e)) BT © 1) g ST ® Dlu(—e1))

(1)(

~ xey Tt g)

where the fourth equality comes from the commutativity of Diagram ([.20]) and Identity
(CZI) and the fifth one from the fact that \ ey — is an algebra morphism. O

Corollary 2.1.6. For (A, V) € k* x G(k{((X))), we have
(i) Tautlof" o (A ey =) = (A ey =) o Tauty V.
() Tt o (A e —) = (r opg )0 Tantyt 10
Proof.

(i) This follows from Lemma thanks to Lemma [35][(i)] and to the commuta-
tivity of Diagram (2.2]).

(ii) This follows from Lemma thanks to Lemma and to the commuta-
tivity of Diagram (2.4]).

O



THE DOUBLE SHUFFLE TORSOR IN TERMS OF BETTI AND DE RHAM COPRODUCTS 25
Corollary 2.1.7. The group k* x G(k{(X))) acts on (W\DR’/\/Z%R) by

K o G((X)) — Autiy, g (WER, JBR) (0, ) — (Fautfy ), Taut ).

Proof. Let (A\,¥), (v, ®) € k* x G(k({X))). We have
(1) _ 7T

wi(1) r, W1

L, W, _
aut\ Pewe) = AW, wered) = Ulpgies © (Av oy —)
= Fautg\}’(l) o FautK\:él) o (Ney —) o (rey —)

= Fautg\}’(l) o (Aey —) o Fautgv’(l) o (vey—)

= auty) ©aut g,

where the third equality comes from the fact that W s ' aut}f,’(l) and A — (A ey —) are
group actions and the fourth one from Corollary D:IEI@ Next, we have

r M, (10 T M, (10 r M, (10
aUt(A,é/)@a)(u,é) = aUt()\u,(\I/@a)Aocb) = athf®(A.q)> o (Aven —)
= Fauty’(lo) o Fauti\i’lflo) o (Aepr—) o (repy —)
= Fautéj/l’(l) o (Aep—)o Fautg/l’(lo) o (vey —)

_ . M,(10) r__ . M,/(0)
= autiy) " o aut, g,

where the third equality comes from the fact that ¥ — Fautg’(l) and A — (A ey —) are
group actions and the fourth one from Corollary 0

2.1.3. Actions of the group (Aut(G) x k™) x G(k((X))).

Definition 2.1.8. For (¢, \, ) € Aut(G) x k* x G(k((X))), we define the topological

k-algebra-module automorphism (Fautz)q;()l\)qj), Fautzb’(;o\%)) of (178R,17GDR> given by

r,..v.,y r_ v,10)\. _ (r_ V(1) r_ V(10 \VANY
< ant ;) aut(d),)\&)) .—( aut )y ), aut()\&))o(nd),nd)),

with 773; € Autialg,,, (17GDR) given in (L30).

Proposition-Definition 2.1.9. For (¢, \, V) € Aut(G) x k* x G(k((X))), we define
the topological k-algebra-module automorphism <Fautz:§\)1j), Fauté;"’i’l\g)» of (W\DR, _ﬂgR)
given by

r,..w@@ r_ . .M@10)\ _ (r__.W@1) r_ . M,10) w M
< by’ 0y ut(tb,)\,\lf)) .—< aut () 'yy s Aty >o(n¢ M )

It is such that the following diagrams

Fautz/;’/(\lgp)
(2.12) j j
CautY M
5 ($.2,%) 5
VDR VYRR
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and
Taut (10
DR ($:2,9) DR
VG VG
(2-13) *'1DR\L lf'lDR
Faut?;l’ilg))
MBR = » MBR
commute.
Proof. From Proposition [L4.9)(ii)| and Proposition-Definition 2Z.1.4] we have that the

pairs (ngv, né\") and (F autX’S)), Faut?;’\l(ll)o)> are morphisms in k-alg-mod;qp; the com-

position is then a morphism in k-alg-modi,p. Next, the commutativity of the diagrams
follows from the commutativity of Diagrams ([L37) and (2.9) and Diagrams (L.39]) and

@.10). O
Lemma 2.1.10. For (¢, A\, ¥) € Aut(G) x k* x G(k((X))), we have
v, V(1) —
P = 7 © ' Aut(y) © (1)

Proof. Since both sides are given as composition of k-algebra morphisms of 9DR, it is
enough to verify this identity on generators. We have

r. . v(1) —
aut(A,n¢(\P))( 0) = Adr—lm( el)ﬁ(%(qf)@)()\%)—Adr;(—el)ng(ﬁ(qf@))()‘60)

=g (Ad Iy (—e1)B(T®1) ()‘(%)_1(60))) ="y <Ad Iy (—e1)B(¥e1) ()‘60)>
= % ("aut)§) (eo) ) = n¥ o TansyE) 0 (02) " (eo),

where the second equality comes from the identity I, (p)(—e1) = I'v(—e1) and from
the commutativity of Diagram (I36]) and the third one from the fact that 773; is an
algebra morphism and from the equality 77);(1\1,(—61)) =T'g(—e1). Next,

r V,(1)
aut()\%(\p))( 1) = AdF;I(\I’)( el)()\el)

=) (Ad i el)(M%)‘l(el))) =1 (Ad ry' (- e1>(A€1>>

) V, —
— Y (Faut(quj))(el)> — Yo Faut(Afi)) o (1) Her),

= AdFE,l(—el) ()\61)

where the second equality comes from the identity I, ) (—e1) = I'v(—e1) and the third
one from the fact that n(‘; is an algebra morphism and from the equality ng(f\y(—el)) =
I'y(—e1). Finally, for g € G,

T V,(1)
by (9) = Adpor 61)5(%(\1/)@1)(9)

=1l <Ad rg (enyswen (7 )) =y <Adr—1(_el)5(@®1)(¢‘1(g)))
v< sy Vv _r, V(1) 1
ng ( Faut) (071 (9) ) = ng o Taut Sy o (1) (9),

= Adpo1 e awen) (9)
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where the second equality comes from the identity I';, (p)(—e1) = I'v(—e1) and from
the commutativity of Diagram (I36]), the third one from the fact that n(‘; is an algebra
morphism and from the equality ng(FqJ(—el)) = I'g(—eq) and the fourth and sixth
ones from the fact that (77};)_1(9) = ¢ Y(g). O

Corollary 2.1.11. For (¢, A\, V) € Aut(G) x k* x G(k((X))) we have

W7
(i) Faut ’7(] )(q,)) = 77¢> o Fau‘co\’\%) o (773;\’)

M, (10 _
(i3) Vaut /\17( (\)P)) =t o I1aut(A,\I(j) ) o (")~

-1

Proof. This follows from Lemma 2Z.T.T0 thanks to Proposition-Definition 2T.4] and
Lemma [[.4.8 O

Corollary 2.1.12. The group (Aut(G) x k*) x G(k{(X))) acts on (W\DR,,/\//TgR) by

A 'on w, M,
(Aut(G)xk* ) x G(k((X))) = Altty-algmod VIR, MERY); (6, X, T) s (Faut( oy Cantrs! gg)

Proof. Let (¢, A\, ¥), (¢/,v, @) € (Aut(G) x k™) x G(k((X))). We have

r, ... _r, W) T W) w
A (s X D)o (e ) — MW (gogr v we(n(he®))) = AU, T (ren, (@))) © Tdod!
_ V)
Fau AT)® (1,175 (D)) oy o g
_r_ w1 _r_ W) W W
= aut()\ vy © aut(u(%(q)))) 014" O Ny

1 w1 _
aut()\ \(I/)) o 77¢ o Faut( q())) o (77(1;\/) 1 ongv ongy

:Faut()\;)) o 77¢ o aut( q())) o 772;}/
wi(1) wi(1)

_T
=" aut & D)

o ut(

where the second equality comes from Lemma [[.4.3] the third one from the fact that
v Aut(G) — Auti®? (W R) is a group morphism, the fourth one from Corollary

k-alg
m and the fifth one from Corollary ZZIITI[(i)] Next, we have
r,....M.,10) _TI . M/(10) .., M,10) M
AN D)e (@ 0,®) AW gop w,Ba(n, () —  Awwe(ren, (@))) © Tood!

_ 1, M00) .

= AR W@ () o1 o 77

T M,(10) M,(10) M

="autiyy) o tauti ) ongt o

T, M,10) M, (10)

= aut, " o 77£4 o Faut(uzb) o (né)\/‘)_l o 77£4 ) 77;;//{

_r_...M/0) M ..., M,/(10) M

= aut()\ w) ©°Mp © aut(wb) O 1y
T, M(10) M,(10)

=lautisy ) o tautiy g,

where the second equality comes from Lemma [[L4.3] the third one from the fact that

™M Aut(G) — Aty d(./\//TgR) is a group morphism, the fourth one from Corollary
217 and the fifth one from Corollary Z.IT.TTI(ii)] O
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2.2. The double shuffle group as a stabilizer of a “de Rham” coproduct.

Proposition 2.2.1.

(i) The group (Aut(G) x k*) x G(k{({(X))) acts on Copy_ algg, (W\GDR) by
a1 ®2 1\ !
(¢, \, W) - DV .= (F (¢,§\\)I/)) < aut(¢§\\)11)> .
(i1) The group (Aut(G) x k*) x G(k((X))) acts on Copy_mod,,, (./\/( R) by

(6.2, 9) - DM = (Tt D) 0 DM o (Tautl )

Proof.
(i) This is the formula for the pull-back of the action (0.I) with C = k-alg,, and
0= WgR by the group morphism (¢, A, U) — Fautz/(\;’)(\l\)lj) of Corollary
(ii) This is the formula for the pull-back of the action (1)) with C = k-modyp and

O = //\/\lgR by the group morphism (¢, A, ¥) — autx’;l\g)) of Corollary
O

Definition 2.2.2.
(1) We denote Stab(sut(q)xix)xg(k((x )))(ﬁw PRY(K) the stabilizer subgroup of the

coproduct AEV’DR € Copk_algmp( GR) for the action of Proposition m@
Namely,

Stab(Aut(G)xkx)xg(k<<x>>)(Ag’DR)(k) =
{w, W) € (Aut(G) x k) s GO((XN) | (Tanel ) o BYPR = AP o Faut) i”a,)}

(ii) We denote Stab(Aut(G)ka)Kg(k«X)))(ﬁé/l’DR)(k) the stabilizer subgroup of the

coproduct AMDR o Copy. MPBR) for the action of Proposition R.2.Tl(ii
G k-modtop G
Namely,

Stabaut (@) xi ) g () (A V) (k) =

®2 —~ —~
{(@W)e(Aut(G)ka>w<k<<X>>>| (Fautli(0)) 0 REPT = AgHPR o Taut] Si%}-

Since (G(k({(X))),®) is a subgroup of (Aut(G) x k*) x G(k({(X))), the actions of
Proposition [Z2T] induce actions of (G(k((X))),®) on the spaces Copk—algtop (W\GDR) and

COPy-modsop (X,T%R)_ This enables us to define the stabilizer subgroups (see [Yad, (2.29)
and (2.31)])

Stabg 1c((x)y) (AW PR) (k) = {xp € G(k((X)))| ( aut)y” <1>) o AWPR — AWDR ¢ Ty, <1>}

and

Stabg ac((x ) (A" (k) = {‘I’ € G(k({(X)))| (FautM (10)) o AZHPR = AFPR o Fauty’(m)}-
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Moreover, we have ([Yadl Theorem 2.4.1])

(2.14) Stabg(k«X»)(ﬁg’DR)(k) C Stabg(k«X»)(ﬁé\/’DR)(k).
Proposition 2.2.3. We have
(i) Stab(Aut(G)xkx)[xg(k«X)))(é%’zi)(k) = (Aut(G)ka)KStabg(k«X)))(ééA:’DDP;)(k)-
(i3) Stab(aut(a)xkx)xgk(x)) (Ag 7 )(k) = (Aut(G)xk™)xStabg o x)y) (Ag ) (k).
It is a consequence of the following general lemma

Lemma 2.2.4. Let us consider the semidirect product group H x R. If K is a subgroup
of H x R containing H, then

K =Hwx (KNR).

Proof of Proposition [ZZ.3. Set X = W or M. We use Lemma 22.4] where H =
Aut(G) x k*, R = Q(k(<X>>) and K = Stab(Aut(G)ka)Kg(k«X»)(Ag’DR)(k). We
have that

K N R = Stabiau(ay i wae(xy) (Aa " (k) N G(k((X))) = Stabgexy) (AF ") (k).

Additionally, Stab(Aut(G)ka)Mg(k«X»)(ﬁg’DR)(k) contains Aut(G) x k*. Therefore,
the condition of Lemma [2.2.4] is met and the result then follows. O

Finally, one has from [EF0, Theorem 1.2] that
(2.15) DMR (k) = {¥ € Stabg((xy) (A5 (&) [ (¥[z0) = (¥]z1) = 0}
This establishes an inclusion DMR§ (k) C Stabg(k«X)))(ﬁéA’DR)(k) of subgroups of
(G(k{((X))),®). We then have the following result:
Corollary 2.2.5. We have
(Aut(G) x k*) x DMR§ (k) € Stab(aus(cyxicx g (B ) (k)
N
Stab aut (@) xi g (A ) (k)
Proof. Thanks to Proposition we have
(2.16)  Stab(aui(c)xk yxaix)) (AG M) (K) = (Aut(G) x k) x Stabge(x)) (AGH"H) (k).
On the other hand, using equality (2.I5]), we obtain
(2.17)  (Aut(G) x k*) x DMR§ (k) C (Aut(G) x k™) x Stabge(xyy) (Agt"™) (k).
From equality (Z.I6]) and inclusion (ZI7]), we obtain the inclusion
(Aut(@) x k*) x DMRE (k) C Stab(rus(a)ior) g (A ),

which is the wanted first inclusion. For the second inclusion, thanks to inclusion (2Z.14]),
we have that

(Aut(G) x k*) x Stabgae(xyy) (AeP™) (k) C (Aut(G) x k*) x Stabg ey (A ") (k).
Thanks to Proposition 2.2.3] this inclusion implies that

Stab ()i ) () (Ber V) (k) C Stab(auy () xac g (A ) (k).
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3. CONSTRUCTION OF “BETTI” COPRODUCTS

In this section, we construct a “Betti” version of the double shuffle formalism.
The relevant algebras and modules are introduced in §811: (i) an algebra 17]}\3, de-
fined as the inverse limit of an algebra V¥ endowed with a suitable filtration; (i) an
algebra-module (W\]%, ./(/l\]%) composed of a subalgebra W\]% of 17]]\3[ and a k-module ./(/(\]%
which has a 9]]\3,—m0dule structure inducing a free rank one V/\Z%—module structure on
it. In proposition B.I1.27] we construct algebra-module isomorphisms (isoW’L,isoM’L)
from (W\B,./T/(\]%) to (W\gR,/\//\lgR) indexed by ¢ € Emb(G). This gives rise to a fam-
ily of algebra-module isomorphisms (F compz\f;ﬁl\g), Fcompé/f;\(’ipo))) indexed by elements
(t,\, ) € Emb(G) x k* x G(k{((X))). In §32 we show that the transport by this
isomorphism of the “de Rham” pair of coproducts (ﬁé\)’DR, ﬁé\;"DR) is independent
of the element (¢, A\, ¥) € DMRy (k) (see Theorem [3.2.4]). This is derived from the
chain of inclusions of Corollary and from the torsor structure of DMRy (k) over
(Aut(G) x k*) x DMR§ (k) (see Proposition [L4.14]). The resulting pair of coproducts
is denoted (AW’B, A%B) and equips )7\/\]% and .//\/\(]% with Hopf algebra and coalgebra
structures respectively (see Corollary [B.2.6]).

3.1. The topological algebra-module (17\/\]%,./(/1\]%)

3.1.1. The filtered algebra V]%. Let F5 be the free group generated by two elements
denoted Xy and X;. We consider the group morphism F» — py given by Xg — (y

27

and X; — 1; where (y := e~ .

Lemma 3.1.1. The group ker(Fy — un) is isomorphic to the free group of rank N + 1
denoted Fn41.

In order to prove this, we use the following result:

Proposition 3.1.2 (Nielsen-Schreier Theorem, see [Stel, Theorem 3]). Let F' be a free
group on a non-empty set X and let H be a subgroup of F. Let o : H\F — F be a
section of the canonical projection F — H\F such that T := o(H\F) is stable under
left prefizxation. Then H is freely generated by

{tax(tz) ' |(t,2) € T x X and ta(tz) ' # 1},
where for g € F, g the image of g under the composition F — H\F 5 F.

Proof of Lemma[Z1.1. We apply the Nielsen-Schreier Theorem for X = {Xy, X}, F =

Fy, H = ker(Fy, — puy) and o : ker(Fy — un)\F2 ~ uy — F, where the first map is

the isomorphism induced by the surjective morphism F» — ppy and the second map
- 2nm

given by e''~ +— X' for n € [0, N — 1]. Therefore, we have T'= {X{',n € [0, N — 1]}.

The theorem then states that ker(Fy — pp) is freely generated by:

Xgthxpth=t =1 ifne]o,N —2]

X1t =Xx§ ifn=N-1

o XIX1(XJX1) P =XiX1 (X)) = XX X"

» X = - {
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Finally, ker(Fy — py) is freely generated by the N + 1 elements
{X3', (X§ X1 X5 ™ nefo,n-17 } -

Moreover, if we denote <)Z'0, <)Z¢]r\17) ) the generators of the free group Fyi1

nefo,N—1]
of rank N + 1, one checks that correspondence

Xo— X', Xen = X0 X1Xy" for n € [0, N — 1]
defines a free group isomorphism from Fi 1 to ker(Fy — uy). O

We then obtain the following short exact sequence
(3.1) {1} — FN+1 — Fh — UN — {1}

Next, let o : uny — F5 be the set-theoretic section of F5 — un given by e Xy
for n € [0, N — 1]. Thanks to the exact sequence (B.I]) we obtain a bijection

(3.2) Yipun X Fyp1 — Fy, (G x) = o(Q)x;
where Fivy; is seen as ker(Fy — pun) C Fy thanks to Lemma B.1.11
The set uny X Fn41 is equipped with a right Fy1-set structure by
(¢, z) xy = (¢, xy), for (¢,x) € uny X Fny1 and y € Fnq.
The group F5 is also equipped with a right Fyi-set structure given by
xxy:=zxy, forx € Fy and y € Fni1;

where Fiyi is seen as ker(Fy — py) C Fy thanks to Lemma BTl One checks that
(B2) upgrades to a right Fy1-set isomorphism.
Let us consider the tensor functor

k(=) : {right Fny1-sets} — {right kFyi-modules}

taking X to kX, the set of finitely supported maps X — k. Applying this functor to the
isomorphism of right Fiyi-sets (8.2), one obtains the right kFiy;1-module isomorphism

(33) kY kuy ® kFN+1 — kFh,

where both the source and the target are equipped with the right kFy1-module struc-
ture given by the right Fi1-set structure on uy x Fyy1 and F5 respectively.

Let us denote Z := ker(kFy — kupy) where kFy — kup is the k-algebra morphism
induced from the group morphism F» — pun. Then 7 is a two-sided ideal of kF5. In
particular, 7 is a right kF1-module.

Let € : kFy41 — k be the augmentation morphism of the group algebra kFn1q. It is
equipped with a right regular kFi-module structure.

Lemma 3.1.3.

(i) The k-module isomorphism kX : kuy @ kFny1 — kFy sets up a right KFyn1-
module isomorphism of T with kun ® ker(e).
(i) The ideal I is linearly generated by o(C)(x — 1) where ( € un and © € Fny.

Proof.
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(i) The following commutative diagram of Fyi-set morphisms

P

UN X Fy1 > I
N /
UN

induces a commutative diagram of kFxn1-module morphisms
k>

kun @ kEn41 kF,
m /
kun

One checks that the associated group algebra morphism of the first projection
p1: N X Fyy1 — p is identified with id ® € : kuy ® kFvy1 — kuy thanks
to the identification kuy @ kFy11 ~ k(uny X Fny1). Therefore, the ideal Z is
mapped by the isomorphism k¥ to the ideal ker(id ® €) = kun ® ker(e).

(ii) Since ¢ : kFy11 — k is the augmentation morphism, its kernel is generated by
elements x — 1 with « € Fiy;1. Therefore, taking the image of the generators by
k>, we obtain generators of the ideal Z as announced.

O

Proposition-Definition 3.1.4. Let V]]\Bf be the group algebra of Fy over k endowed
with the filtration

FVN =17,
for m € N, where T™ is the m''-power of the ideal T with the convention that T° = V]%.
The filtration (F™VE)men is an algebra filtration.

Proof. Immediate. O

Lemma 3.1.5. Let m € N. The k-module isomorphism k3 : kuy @ kFni1 — kFp
sets up a right kFni1-module isomorphism of ]:mV]% with kuny ® (kFn41)5', where
(kFn+1)o is the augmentation ideal of the group algebra KFn 1.

Proof. If m = 0, we have kuy @ kFny1 ~ k(uny X Fyi1) LN V]% = ]:OVJ]\B,.
Next, if m = 1, we have

FIV§ =T ~kuy @ ker(e) = kpny ® (kFn11)o,
where the identification is given by Lemma B:I:{I
Now, let m > 2. Since kuy ® kFny1 is a right kFy;1-module, we have that
(3.4) kun @ (kFn41)f" = (kpn © (KFv1)o) - (KFv)g

The composition kuy @ kFny1 ~ k(uny X Fny1) LN V]% is a right kFxny1-module
isomorphism which, combined with the identification Z ~ kuy ® (kFn4+1)o and equality
B4), gives us

kun @ (KFy41)f" ~ T (kFng1)g
where (kFN+1)6”_1 is seen as a subset of kFn11 = kker(Fy — un) C kF,.
It remains to show that Z - (kFy41)]" ' = Z™. First, since (kFi41)o C Z, we have
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Z-(kFn41)g ! € Z™. Conversely, thanks to Lemma BL3[(GD), Z™ is linearly generated
by elements

(G, 21), - (Gmy2m)) == 0 (G) (21 = 1) -+ - 0 (Gn) (@ — 1)

with ((1,21)s .-+, (Gns Tm) € un X Fn41. Moreover, we have that

H((Cl, xl)’ R (Cm’ xm)) = O-(Cl) T O-(Cm) (Ada(cm)—l---o(@)_l ($1) - 1)

(Ada(gm)—l___a(@)—l(wg) — 1) e (Adg(cm)—l(.%'m_l) — 1) (.%'m — 1)
Next, since Fy41 is a normal subgroup of F5, we have that

(Ado(c)too(e) - (#2) = 1) - (Adg(g )1 (@m—1) = 1) (2 — 1) € (KFn41)5
In addition, thanks to Lemma B:I:{l we have
(1) () (Adg,)-1o(c)-1 (1) — 1) € kFy - (KFn1)o-
Since (kFn+1)o C Z, it follows that kFy - (kFy11)o C kF5-Z and since Z is a two-sided
ideal of kF5, we have kFy - Z = Z. Therefore,
U(Cl) . U(Cm) (Ada(cm)—l...g(@)fl(xl) — 1) ez,

and then II((C1, 1), - - -, (Gny Tm)) € Z-(kFn41)0" !, thus proving the wanted inclusion.
U

3.1.2. The topological algebra 17]]\3[ The decreasing filtration (fmv}%)meN given in Proposition-
Definition B.IT4] induces an algebra morphism V¥ /F™HIYE — VB /FmYPB - One defines

Definition 3.1.6. We denote
3B . i B B
the inverse limit of the system (V§/F™VR, Vi /FmHVE — VE/FmVR).
The algebra )7]]3 is equipped with the filtration F"VY = {iglme]%/]:maX(m’l)VEf.

When equipped with the topology defined by this filtration, 17]}\3, is a complete separated
topological algebra.
Recall that kFxn,1 is a group algebra equipped with a filtration given by the powers

of its augmentation ideal. Let us denote kFyy1 the completion of this group algebra
with respect to this filtration.
Lemma 3.1.7.
(i) The k-algebra morphism k¥ o (1 ® —) : kFy11 — VY gives rise to a topological
k-algebra morphism k?];l — 17]]\3,
(i) The k-module morphism k¥ : kuny @ kFny; — V]% gives rise to an isomorphism
of topological right kf;l—module kY - kuy ® kf;l — 17]]\3[
(iii) The k-algebra morphism k?;l — )7]]3 is injective.

Proof.

(i) This follows from the fact that the k-algebra morphism k¥o(1®—) : kFy4+1 — V&
is compatible with filtrations, which follows from Lemma
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(ii) This follows from the fact that k¥ : kuy @ kFy11 — V]% is an isomorphism of
filtered right module over kF'n41 (see (B.3).

(iii) By ., )b the topologlcal/kilgebra morphism kf;l — VN is equal to the > compo-
sition k> o (1l®-—): kFN+1 — VN The _The map 1® — kFN+1 — k,uN ® kFN+1 is

trivially injective and K> : kuny ® KEn .- N4+1 — VN is injective by |(i1)l This implies
that their composition is injective, implying the claim.

O

Proposition-Definition 3.1.8. Let « € Emb(G). There is a unique topological algebra
isomorphism iso¥>* : V]% — VER given by

1
Xo — exp <N€0> g,; and X; — exp(er),

27

where g, = 1" (e N ).

Proof. Recall that the set Mory_aiq (kF5, 178R) is identified with Morg,p (FQ, (17813‘) X).

As a consequence, there is an algebra morphism V]% — 17813‘ given by

1
Xo — exp <N€O> g, and X +— exp(eq)

since the images of Xy and X are invertible. Composing the k-algebra morphism
V]% — VgR with the k-module isomorphism k¥ : kuy @ kFn41 — V]]\Bf and the inverse

of the k-algebra isomorphism S : k((X)) x G — 17813‘ respectively from the left and
from the right, we obtain a k-module morphism

(3.5) kuy ® kFny1 — k<<X>> x G.

One checks that morphism (B3.3]) is a right module morphism over the k-algebra mor-
phism kFx1 — k((X)) given by

Xo — exp(xg) and )NQ;\L] > exp (%x()) exp(—xgn) exp (—%xo) , forn € [0, N —1].

In addition, (¢4 ® 1)ieo,N—1] and (exp (%xo) ® gf)le[[o N_1] Are bases of kuy @ kFn11
and k((X)) x G respectively and the morphism (3.35]) induces the following bijection
between the bases

l
(3.6) ¢h®1—exp <Nx0> ®gl, for 1 € [0,N —1].

Furthermore, there is a topological k-algebra isomorphism kf;l — k((X)) such that
the following diagram

kFni1 k((X))

~ 7

kFn41
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commutes, where kFy,1 — kf]\:l is the canonical k-algebra morphism.
Indeed, such an isomorphism is obtained by composing the topological k-algebra iso-

morphism kf;l — k((X)) obtained from [Qui, Example A2.12] and the topological
k-algebra automorphism of kFy41 given by

o 5 % F—1
Xy +— Xp and Xq\bf — Adexp(%log()?o))(XC}{,) for n € [[O,N — 1]].

On the other hand, one checks that kuy ® kf;l is a free right kf;l—module with
basis (Chy®1),ep0,n—1] and recall that k((X))xG is a free right k({X))-module with basis

(exp (%xO) X gi)le[[o, N-1]* Therefore, there is a unique module isomorphism kuy ®

kf;l — k((X)) x G over the k-algebra isomorphism kf;;l — k((X)) which extends
bijection (B.6]) between bases. Therefore, the restriction to the bases of the following
diagram

kﬂN®kFN+1 > k<<X>> x G

(3.7) \ /

kpuny @ kFnyq

commutes, where kuy @ kFyy11 — kuy ® k?];l is the tensor product of the identity
of kuy with kFy4q — kfﬂl. This implies that the diagram commutes.

Next, by composing the k-module isomorphism kuy ® kf;l — k{({(X)) ¥ G from
the left and from the right with the isomorphisms kX! : 17]}\3, — kuy ® kf;;l and

B:k{(X)) xG — 17]]\3[ respectively, we obtain a k-module isomorphism 17]}\3, — 17813‘.
Let us prove that this k-module isomorphism is a k-algebra isomorphism. It is, there-
fore, enough to show that it is a k-algebra morphism. Let us consider the following
prism

kun ®kFN+1 > k<<X>> X G
k2 kpun ®k?1;1 B
kX
VB , DR

The left, right and middle squares commute by definition of Ei, 17]]3 — 98R and
kun @ kFyy11 — k((X)) x G respectively and the upper triangle is Diagram (B.7]),
so is commutative. Additionally, the arrows going from the upper triangle to the
lower triangle are isomorphisms. Therefore, the lower triangle is commutative. The
restriction of the topological k-module isomorphism 17]}\3, — 17813‘ to V]]\Bf is an algebra
morphism, which by the density of V]]% in 911\3, implies that 911\3, — 98R is a topological
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k-algebra morphism and therefore a topological k-algebra isomorphism. Finally, the
commutativity of the triangle also implies that the k-algebra isomorphism V]]\Bf — VgR
is as announced. O

Proposition 3.1.9. Let ¢ € Emb(G) and ¢ € Aut(G). We have

V,0p~ L Vi

iso = 77}; oiso”",
with 773; € Atk alg,,, (178R) given in (L35]).

Proof. Since both sides are given as a composition of topological k-algebra morphisms,
let us the equality by checking on the family of topological generators:

is0¥°97" (X1) = exp(er) = my 150" (X1)

and

. 01 1 1 1
iso?>°¢ (Xo) = exp (ﬁ%) Giop—1 = €XP <N€O> #(g.) = 773; <exp <N€O> 9L>

= 773; o iSOV’L(XO)

O
3.1.3. The filtered algebra WE,.
Proposition-Definition 3.1.10. Let us denote
(3.8) Wy =k Vp(X1 —1).
It is a subalgebra of V]% endowed with the filtration
(3.9) FWER = WE n Fvl
for m € N. The filtration (F"WY)men is an algebra filtration.
Proof. Immediate. O
Lemma 3.1.11. For m € N*, we have
(i) FPWE = FmyR n VR (X, - 1). (ii) F"WE = F=1YB (X —1).
Proof.

(i) Let m € N*. We have
F"Wi =F™VN N (k@ Vi (X, — 1))
=F"VR N (ker(VR = k) N (k & VR(X; — 1))
=F"Vy NVN(X1 — 1),
where the second equality follows from the inclusion F™VE C ker(VE — k) since
(3.10) FMYR = ker(VS — kuny)™ C ker(VE — kuy) C ker(VE — k),

where the last inclusion of (B.I0) is a consequence of the fact that V& — k is the
composition V]]\Bf — kuy — k (the maps with target k being the augmentation
morphisms). The third equality follows from

ker(VE » k)N (k@ Vi (X, — 1)) = VR (X, - 1)
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which, in turn, follows from the fact that ker(V% — k) N (k@ VR (X1 — 1)) is the
kernel of the composed map k & V¥ (X; — 1) € V& — k which is the identity on
k and takes V5 (X7 — 1) to 0. Its kernel is therefore VE(X; — 1).

(ii) Recall from Lemma that, for m € N* the k-module isomorphism k3 :
kuny @ kFnyp — V]]\Bf induces an isomorphism

(3.11) F™WE ~ kuy @ (kFn )0,

where (kFy41)o is the augmentation ideal of the group algebra kFn;1. The
isomorphism kY also induces an isomorphism

V]}\B/(Xl — 1) ~kuny ® kFN—H()?CRf — 1)
Thanks to Lemma BID this induces the isomorphism
./T"mW]% ~kuny ® <(kFN+1)6n N kFN—I—l(jZCR] — 1)) .

Next, thanks to [Wei, Proposition 6.2.6], we have a kFx41-module isomorphism
(kFn11)®W+D 5 (kFny1)o. This isomorphism induces the following isomor-
phisms

kFy 1 @ {0} = kFy 11 (Xeg — 1) and (kFyp)g' ™) *N ) = (kFyp)g,

where for the latter one we use the fact that (kFn41)g = (kFN+1)6”_1(kFN+1)0
and the fact that (kFy1)5" " is an ideal of kFy .

On the other hand, using the inclusion (kF; N+1)6n71 C kFy.1 and the isomor-
phism kFy 1 @ {0}V ~ kFy11(Xeo —1), one obtains

(KEn1)f™ )PV A (KEvgr @ {0}Y) = (kFyg)p " @ {0},

Finally, one checks that the isomorphism (kFy,1)®WV+D — (kFy,1)o induces
an isomorphism

(kFy1)p ' @ {0} = (kFny1)p  (Xeg — 1)

and using (BI1I)) for m replaced by m — 1, together with the fact that k¥ in-
tertwines right multiplication by X; — 1 on V]]\Bf with the tensor product of the

identity on kun with right multiplication by X Qo 1 on kFy41 implies

kpn @ (KFv)p (Xgg — 1) = F7 VR (X - 1),

thus proving the wanted result.

0

3.1.4. The topological algebra )7\7]% The decreasing filtration (F™W%),.en given in
(B3) induces an algebra morphism WE /FmHIWE — W8/ Frws.

Definition 3.1.12. We denote
OB .1 B/ =myp)B
Wy = lIm Wy /F" Wy

the inverse limit of the projective system (WX /FmWE WE /Fmtiwsk — WB / Frwk).
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The algebra )7\7]% equipped with filtration
FUWR 1= lim W/ Fr Wy

and endowed with the topology defined by this filtration is a complete separated topo-
logical algebra.

Lemma 3.1.13. The k-algebra inclusion W]% C V]% gives rise to an injective morphism
of topological k-algebras V/\jﬁ — 17]]3
Proof. This follows from the compatibility of the inclusion W& C V& with filtrations
and the fact that the filtration on WE, is induced by that of VE,. O
Proposition 3.1.14. The topological algebra V/\Z% is isomorphic to the topological sub-
algebra k © VS (X1 — 1) of VX.
Proof. This will be done following this program:
Step 1: Construction of the topological k-module V/\Z% 4
Let us define a k-submodule WE,_F = VR(X; — 1) C WE. Tt is equipped with the
filtration

F"Wir 4 =Wy NF"Wy , form € N

induced by the inclusion W]]\gf + C W]%. Denote as follows the associated inverse limit
W8, = lm Wy /F" Wy .

One checks that the k-module inclusion WE, L C W]% is compatible with the filtrations,

which induces a morphism of topological k-modules 17\/\]%’ L V/\jﬁ As the filtration of

wg + is induced by that of WE, this morphism is injective. Thanks to Lemma B.1.13}
we then have a chain of injections

(3.12) WE L W — VR,
On the other hand, for any m € N*, we have
F"WR, =WR NF"WR =VR(X1 — 1) N F"VR(X — 1) = F" VR (X - 1),
where the second equality comes from Lemma B:EE[I Therefore, for any m € N,
VR(X1 - 1) if m=0
fmflv]%(xl —1) otherwise
Moreover, let us notice that W& =k @ W]%’ 4~ Using (3.13)) we obtain
FWy =k ® FOWR
F"Wix = F™"Wy, ,, for m € N*.
These equalities induce the following topological k-algebra isomorphism

(3.14) Wy = lim WY /F"Wy =~k & im Wy _ /F"Wg . =k & Wy ..

(3.13) F"Wh . = {

where, on the right, the algebra structure is defined by the conditions that 1 € k is a
unit and that the inclusion 17\/\]% +Cka V/\Z% 4 is a non-unital algebra morphism.



THE DOUBLE SHUFFLE TORSOR IN TERMS OF BETTI AND DE RHAM COPRODUCTS 39

Step 2: The existence of a topological k-module morphism ¢ : 17]}\3, — )7\/\]% o such that
the triangle

iAB . B
WN,+ VN

(3.15) \ /
7} —(X1-1)

1B
VN

commutes. First, let us consider the k-module morphism ¢ : V]% — W]]\gﬁ 4 given by
v v(X; —1). For any m € N*, one has

Q(F™VR) = F"VN(X1 — 1) C F"WR(X — 1) = F™"Wi ..,

where the first equality follows from the definition of ¢, the inclusion follows from
decreasing character of (F™VE)men and the last equality follows from (3I3]). One also
has

e(FOVR) = VN(X1 — 1) = FOWR .

This implies that the morphism ¢ : V]% — W]]\gﬁ 4 is compatible with filtrations. This
induces a k-module morphism ¢y, : Vi /F™VE — WY | JF"Wg .
In the following prism

Z]\Bf,+ ‘ Vi
\ —(X1-1)
VN
VV]%’JF/.7-"””‘)/\/1%’4r . y VS FmVR
k l Al—l)
VN/F"VY

the upper triangle commutes by definition of ¢ : V]% — W]%’ 4 and all the squares
commute thanks to the compatibility of the maps ¢ : V]% — W]]\gﬁ o (X =1
V]]\Bf — V]]\Bf and W]]\gﬁ L C V]% with filtrations. Therefore, thanks to the surjectivity of
the projection V§ — VB /FmVE the lower triangle commutes. As a consequence, the
morphism ¢ : VE, — WJ% 4 induces a morphism of topological k-modules { : 17]]3 —
V/V]%’ 4 such that Diagram (3.I5) commutes. Finally, the commutativity of the latter
diagram implies

VR(X) — 1) = Im( — -(X; — 1))

(3.16) —Im (17]% LR 17}3) C Im (W]E;,+ = 17}3) .
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Step 3: The existence of a topological k-module morphism (5 : )7\7]% L 17]}\3, such that
the triangle

Wh VN
(3.17)
é R —(X1-1)
VN

commutes. First, one notices that ¢ : V]% — W]% + 1s a surjective k-module morphism.

It is injective thanks to the integral domain status of the algebra V]%. Therefore,
the map ¢ : V]% — W]%’ + is a k-module isomorphism whose inverse will be denoted
¢ : W]]\gﬁ . — VR. Thanks to (3I3), the k-module isomorphism ¢ : W]]\gﬁ L = VR
restricts to an isomorphism .FmW]]\BL L fmflv]%, for any m € N*. This induces a
k-module isomorphism ¢,, : VV]]%#/]:’77”1/\/]]?77_F — VR/Fm=IYB for any m € N* and,
via a prism similar to the one of Step 2, one checks that the following triangle

WE PR, T
m /‘(Xl -1)
g

commutes where the morphism —- (X7 —1) : V8 /Fm=1Y8 — VB /FmYB is well-defined
thanks to the inclusion F™ V5 (X; — 1) € F™VE being a consequence of (3I3). On
the other hand, we have, for any m € N*, the following triangle

VB /FmyYR

7(Xy' wlfl)

VB /Fm—1yB « VB JFmYR

Tm

where 7, : VR /FmVE — VB /Fm=1YB is the morphism which associates to the class
of an element modulo me]]\g[, its class modulo fm*1VJ%; this is well-defined and sur-
jective thanks to the inclusion F mV]]\B, va m—lvj%. One then checks that this triangle
commutes. By linking the two triangles and doing the inverse limit we obtain the
following diagram

WR 4 %5
\ / —(X1-1)
¢
. B /m—1y,B B
1<£n VN/}' 1% = VN

where 7 := limm, : 17]}\3[ — lim V& /F™ Y8 is obtained by degree shifting and is
— —

therefore a topological k-module isomorphism. Let us set qu =7"lo $ : V/\jﬁ L 17]]3
It is a topological k-module morphism such that Diagram (B.I7) commutes. Finally,
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the commutativity of the latter diagram implies
tm (WR 1 = VR) =Tm(— (X1 = 1) 0 9)
(3.18) CIm(—-(X; —1)) = VB(X; - 1).
Finally, combining inclusions (3.16]) and (B.I8]) we obtain
W, ~ Im (W]E;,+ < 17}3) —VB(X; - 1).

In addition, thanks to[3.14] the topological k-algebras k@w\fﬁ 4 and W\]% are isomorphic.
One then obtains the isomorphism of topological k-algebras

WE ~ k@ VR(X, —1).
O

Proposition-Definition 3.1.15. Let « € Emb(G). There exists a topological algebra
isomorphism iso"V* : 17\/\]% — WgR such that the following diagram

WE E L poR
(3.19) j j
V]% Vi VGDR

commutes.

Proof. We have
is0”* (X1 — 1) = exp(e1) — 1 = uey,
exp(z)—
x

where u = f(e1) with f(x) being the invertible formal series L Moreover, since

iso¥* : 17]}\3, — 17GDR is a k-algebra isomorphism, we obtain
iso¥ (ﬂ%(Xl - 1)) = iso”(VR) isoV* (X — 1) = 98Rue1 = 98R61.

This implies that isorgB (i1 : )7]]\3,(X 1—1) — ﬁGDRel is a surjective k-module morphism
N\AL™

)

which is trivially injective, therefore, is a k-module isomorphism. Taking the direct sum
with k, we obtain a k-module isomorphism

k &® 9]%()(1 -1)—=ko 98R61,
which is a k-algebra isomorphism. Finally, thanks to Lemma [B.I.T4], this isomorphism
is the wanted k-algebra isomorphism iso”V* : V/\jﬁ — WgR. O
Corollary 3.1.16. Let « € Emb(G) and ¢ € Aut(G). We have

W09~ 1 Wit
9y

iso
with n(l;v € Autk_algtop(w\gp‘) given in Lemma @
Proof. The statement follows from Proposition B.1.9] thanks to the commutativity of

diagrams (3.19) and (I37). O

:ngvoiso
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3.1.5. The filtered module M%.
Proposition-Definition 3.1.17. The quotient k-module

(3.20) ME = VE [VR(Xo - 1)

is a V&-module. Moreover, if we denote 1p the class of 1 € V& in MY, then the
canonical projection

—-1p: V]]\B[ — M%
s a surjective V]%—module morphism and its restriction to W]% s a W]%—module 150-
morphism.

Proof. This follows from the direct sum decomposition

VE =k VR(XI 1)@ VE(Xo—1)=WE e VR (X —1)
given by [Wei, Proposition 6.2.6]. O
Remark. The statement implies that (— - 1B)\W}3 : WE — M is a WE-module
isomorphism, therefore M% is a free W]%—module of rank 1.

Proposition-Definition 3.1.18. The k-module ./\/l% 1s endowed with the decreasing
k-module filtration given by

(3.21) FME .= FPWE 15 for m € N.

Moreover, the pair (./\/l%, (}-mM%)meN) is a filtered module over the filtered algebra
(WR, (F"WR) et )

Proof. Immediate. O

Lemma 3.1.19.
(i) For any m € N, the k-module isomorphism — - 1g : Wy — MY induces a
k-modules isomorphism me]% — fm/\/(%.
(ii) For any m € N, we have F"ME = FmV8 . 15.

Proof.
(i) By definition of F™ MY, the isomorphism — - 1g : W8 — ML restricts to a
surjective k-module morphism me]]\Bf — .Fm./\/l%. In addition, since — - 1p :
WE — ME is injective, so is the restriction Fm"WE — FmME.
(ii) First, if m = 0, the equality follows from Proposition-Definition B.IT.I7l
From now on, let m € N*. Since F™"WEY C F"VB  we have that
FmMy C F™Vy - 1g.

Conversely, let us prove the inclusion me]% -1 C fm/\/(%. This inclusion is
equivalent to

FmVE ¢ FPWR + VR (Xo - 1).
Since FVE = I™ = ker(V¥ — kun)™ and by Lemma BIIT[(7)] this inclusion

is also equivalent to

(3.22) I™ C (I™NVR(X1 — 1)) + VR(Xo — 1).
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We have
T = ker(VE — kuy) C ker(VY — k) = V8(Xo — 1) + VR (X1 - 1),
with ker(V]]\g[ — k) being the augmentation ideal of the group algebra V]]\Bf =kFy
and the last equality being a consequence of [Weil Proposition 6.2.6].
This implies
I"=T" ' c T (VR(X1 — 1) + Vp(Xo — 1))
(3.23) cT™WE(X, - 1)+ VB (X —1).
Moreover, V5 (X; — 1) C ker(V¥ — kuy) since X7 — 1 + 0 through the map
VB — kuy. This implies

(3.24) T WR(X, 1) c Tz =™
On the other hand, we have

(3.25) T IWR(X) — 1) C VR (X —1).
From (3.24]) and ([B.25]) we obtain

(3.26) I"WR(X1 - 1) C (TN V(X1 - 1)).

Finally, from (323]) and (3:26]), we obtain
I™ C (I™ N VR (X1 — 1)) + VR (Xo — 1),
which is the wanted inclusion.

0

3.1.6. The topological module ./(/l\]% The decreasing filtration (me%)meN given in
(B2T)) induces a k-module morphism MY /F I ME — MB /Fm mB .
Definition 3.1.20. We denote
M = lim MR/ F7 M.
the limit of the projective system (MY /FmMEB ME /FmHIME — MB /FmMB).
The k-module /(/l\]% isa 17}?,—module equipped with the filtration
Fr My = lim F" M/ FPD MR, for m € N.
A/ B

When equipped with the topology defined by this filtration, M is a complete separated
topological k-module.

Lemma 3.1.21.
(i) The surjective k-module morphism — - 1g : V& — MY induces a topological
surjective k-module morphism —/-1\}3 : 17]]3 — ./\//TJ%
(ii) The k-module isomorphism — - 1g : W — MY induces a topological k-module

isomorphism —/-1\3 : V/\jﬁ — /(/l\]%

Proof.
(i) By definition of 911\3, and ./(/l\]%, this follows from Lemma BTT9[(ii)
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(ii) By definition of ./(/l\]%, this follows from Lemma BII9[(1)]

Corollary 3.1.22.
(i) The pair (17]]\3[,./(/1\]%) is an object in the category k-alg-modigp.
(ii) The pair ()7\7]%,./(/(\%) is an object in the category k-alg-modye,. Moreover, .//\/\(]%
is a free V/\jﬁ—module of rank 1.

Proof. Tt immediately follows from Lemma B.1.27] O

Proposition 3.1.23. The topological k-module morphism —/-I\B : 17]]3 — ./\//TJ% induces

an isomorphism 17]]\3,/17]%(X0 -1)— /(/l\]% of topological k-modules.
In order to prove this, we will need the following Lemma;:

Lemma 3.1.24. Let V be a k-module and u be an endomorphism of V.. Let f: VN —
VN be the endomorphism given by

(1)0, Ce 7UN—1) — (U(UN_l) — Vo,V9 — V1,1 —V2y..., UN—2 — UN—l)-
Then we have an isomorphism

coker(f) ~ coker(u — id).

Proof of Lemma[3.1.27. Let us consider the k-module morphism sum : V¥ — V given
by (vg,...,vN—1) — vg + -+ + vy—1. This morphism sends Im(f) to Im(u — id).
Therefore, there is a unique k-module morphism V /Im(f) — V/Im(u — id) such that
the diagram

vN sum V

| }

VN /Im(f) —— V/Im(u — id)

commutes. Let us show that the morphism V /Im(f) — V/Im(u — id) is an isomor-
phism. First, the surjectivity of the morphism sum : VY — V implies that the mor-
phism V¥ /Im(f) — V/Im(u—id) is surjective as well. Second, let (wo, ..., wy_1) € VIV
such that there exists an element v € V such that wo+- - - wy_1 = u(v)—v. The element
(vo,...,un—1) € VI given by

UN-1 = V,UN-2 = WN-1+V,UN-3 = WN-2 +WN-1+V,...,U00 =W+ " WN-1+V
is such that

(wo, ..., wn—1) = (u(vy_1) — vo,v9 — V1,...,UN—2 —ON—_1) € Im(f).
Thus proving the injectivity of V¥ /Im(f) — V/Im(u — id). O
Proof of Proposition [7.1.23. The proof consists of the following steps:

Step 1: Construction of the k-module isomorphism Py : (kFn41)Y — V&.
As in (33]), one defines the k-module isomorphism kFy11 ® kuy — VE, such that for
(7,¢) € Fyy1 X py

(3.27) r® (¢ zo(C),
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where Fy; is seen as ker(Fy — uy) C Fh thanks to Lemma BI.Jl Moreover, one
checks there is a k-module isomorphism (kFy, 1) — kFy1 ® kuy given by

N-1

(3.28) (V0 oN-1) = > v @ (.
i=0

Therefore, the composition Py : (kFy;1)Y — kFyyi1 ® kuy — V]% is a k-module
isomorphism and is given by

(1)0, - ,UN—l) — v +v1Xg+ - —i—UN_lXéV_l.

Step 2: Identification of MZ%.
One checks that the endomorphism f : (kFny1)Y — (kFny1)” given by

(329) (’UQ, - ,’L)Nfl) — (’L)Nfl)sz — V0,V9 — V1,V1 —V2,...,UN_2 — ’L)Nfl),
is such that the following diagram

(KFy1)Y — s (kFyy)Y

(3'30) Poi lpo

VN VN

—(Xo—1)

commutes. This induces a k-module isomorphism coker(f) ~ coker(— - (X — 1)).

On the other hand, by applying Lemma B.1.24] with V' = kFn 1 and u = — - X, we
obtain an isomomorphism coker(f) ~ coker(u — id). It then follows that

M, = VB VR (Xo — 1) = coker(— - (X — 1)
~ coker(f) ~ coker(u —id) = kFN+1/kFN+1()?0 —-1).

Step 3: Compatibility of the isomorphism kFn 1/ kFN+1()Z'0 -1)— M% with filtra-
tions. Let us show that for any m € N, we have

(KFy41)T / <(kFN+1)6” NkFy1(Xo — 1)) ~ FME.

If m = 0, this has been proved in Step 2. From now on, let us assume that m € N*.
The isomorphism kFni1/kFn41(Xo — 1) — M% fits in the following commutative
diagram

KFyy «— VB

(3.31) l l

kFN+1/kFN+1(X0 — 1) — M%

where kF N1 — V]% is the group algebra morphism induced by the group morphism
Fny1 ~ ker(Fy — un) C F obtained in Lemma 311l This group algebra morphism
induces the injection

(kFn41)0t < F™VR.
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Then, thanks to the commutativity of Diagram (B31]), the k-module isomorphism
kFni1/kEN1(Xo—1) — M% induces an injection

(kFN+1)6”/ ((kFNH)gL A kFy41(Xo — 1)) < FrYB L 1p = FrB
where the equality comes from Lemma This implies that

Im ((kFNH)gL / ((kFNH)g” A kFys1(Xo — 1)) = M%) c FrMB.
Conversely, let us show the opposite inclusion. Thanks to Lemma we have

FrME = FrwB o1 = FrolVR (X - 1) - 1.

Moreover, we have by definition that ]—"m*IV]% = (F IVE)mfl. This implies, thanks to
Lemma B.T3[(ii)] that F=1YB(X; — 1) - 1g is linearly generated by elements

o(C)(z1 = 1)+ 0 (Gn-1)(@m—1 — 1)(X1 —1) - 1
with ((1,21)s -+, (Gne1,Tm-1) € un X Fny1. Additionally, we have that
o(C)(zr = 1) o(Cm1)(@m—1 —1)(X1 — 1) - 1p =
(Ado(c) (1) = 1) -+ (Ado(cr) - o(¢n 1) (Tm-1) = 1) (Ado(cy) (¢ 1) (X1) = 1)
o(C1) o (Cn-1) 1B =
(Ado(c) (1) = 1) -+ (Ado(cy) - o(¢n1) (Fm-1) = 1) (Ado(cy) (g 1) (X1) = 1) - 1B
which belongs to the image of (kFN+1)6”/ <(kFN+1)6” NkFy1(Xo — 1)) by the iso-
morphism kFN+1/kFN+1()?O -1)— M% as
(Ado(y(@1) = 1) -+ (Ado(cr)ogm1) (@m-1) = 1) (Ado()o(cn1)(X1) = 1),
seen as an element of kFy1, belongs to (kFn41){". This implies that
FmMB € Im <(kFN+1)6” / <(kFN+1)6” A kEwa (Xo — 1)) = M%) .
Therefore, one has equality
Im ((kFN+1)6”/ ((kFN+1)6” N kFy.1(Xo — 1)) = M%) = FMB,

which establishes the wanted isomorphism.
Step 4: Identification of ./T/(\]%
Thanks to Step 3, one has for any m € N

MBJFmMB ~ kFy 4 / <kFN+1()~(0 1)+ (kFNH)g”)
and, on the other hand, for any m € N*,
kFN+1/ (kFN+1()?0 -1+ (kFN+1)6") = coker (kFy41/(kKFn41)5' " = kFn41/(kKFn41)5"),
where the morphism
(3.32) kFy41/(KFn41)g " = KEN41/ (KEy41)E
is induced by the endomorphism — - ()?0 — 1) of kFn41. Therefore,
ME; = lim coker (kFv41/(kFi41)5 " = kFn1/(KFn1)f)
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Step 5: Identification of VB /VB(Xy — 1).

As in Lemma B.I.5] one proves that the k-module isomorphism kFy11 ® kuy — V]%
given in [3.27) allows us to identify (kFy11)7 ® kuy with FVE for any m € N.
Recall the isomorphism (kFx 1) — kFy,1 ®@kuy given in [3:28). One checks that it
is compatible with the filtration of (kFy1)" given for any m € N by Hf\il(kFNJrl)(’)”.
Therefore the isomorphism Py : (kF; N+1)N — kFni @ kuy — V]]\Bf of Step 1 is com-
patible with filtrations. Therefore, it extends to a topological k-module isomorphism

ﬁo : (kFN+1)N — )7]]\3[

On the other hand, the endomorphism f : (kFyi1)Y — (kFy41)V given in (3.29)

is compatible with filtrations and then extends to a topological endomorphism f :

—_

(kFn+1)N — (kFn41)"N and, thanks to Diagram (3.30), it is such that the following
diagram

(KFn1)N —— s (kFyy)V

% l:

5B 5B
Vn VN

—(Xo—1)

commutes. This induces a k-module isomorphism coker(f) ~ coker(— - (Xo — 1)).

Similarly to Step 1, by applying Lemma with V = kFn11 and u = — - X, we

obtain an isomomorphism coker(f) ~ coker(u — id). It then follows that
VR /YR (Xy — 1) = coker(— - (X — 1))
~ coker(f) ~ coker(u — id) = kﬁﬁl/kﬁﬁl(ﬁo —1).
On the other hand, we have
KFy 11 /kFy+1(Xo — 1) = coker ({iglkFNH/(kFNH)Bn*l — {ijlkFNH/(kFNH)B"),

where the morphism 1<i£1kFN+1/(kFN+1)g“1 — l<i£1kFN+1/(kFN+1)6n is induced by

the morphism kFy11/(kFny1)0" " — kFn11/(kFny1) given in (3:32).
Step 6: Cokernel of limits and limit of cokernels coincide.
For any m € N*| the morphism

(3.33) kFn11/(kFn)g " = kEv/ (KFy )

induced by the endomorphism — - (Xo — 1) of kFn41 is injective. Indeed, let = €
kFn,41 such that z(Xy — 1) € (kEFn+1)y"- Let [ to be the smallest integer such that
z € (kFn41)b. Let us show that [ > m — 1. Otherwise, since z € (kFn.1)}, we have
that [z] € gr;(kFy41). Moreover, we have that [Xo — 1] € gry(kFn.1). Therefore,
[2(Xo — 1)] € gry 1 (kFny1). Since, by assumption, [ + 1 < m — 1, the condition
2(Xo — 1) € (kFn41)7* implies that [#(Xo — 1)] = 0. Finally, since gr 1 (kFny1) is
an integral domain we would obtain that [x] = 0, contradicting the minimality of .
Therefore, | > m — 1 and the morphism (8.33)) is injective.

In addition, the image of morphism (3.33]) is the same as the image of the morphism
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kFn11/(kEn+1)) — kEny1/(KFn41){" induced by the endomorphism — - (X — 1) of
kFpny1. We then have the short exact sequence

{0} = kFn41/(kFni1)g " = kFnvy/(KFni)g

— coker((kFNH/(kFNH)gn — kFNH/(kFNH)gL)) — {0}
which, by applying the inverse limit functor, gives us

{0} — l<i£1kFN+1/(kFN+1)6”*1 = limkFy1/(kFni1)g" —
lim coker (kF11/(kFn+1)5" = kFi11/(KFn 1)) = 1}311 KFyy1/(kFni1)g ",

where lim, ! is the functor given in [BK72, §1X.2.1].

Since the transition maps of the inverse system (kFy11/(kFn11)0" 1) men+ are surjec-

tive, this implies that lim ' kFy1/(kFy11)g" " = 0 (see, for example, [BK72, Propos-
—

tion IX.2.4]). As a consequence,
l(iin COker((kFN+1/(kFN+1)gL — kFN+1/(kFN+1)gL)) ~
COkeI‘(l}gl(kFN+1/(kFN+1)6ﬂ/ — 1{31 kFny1/(kFn41)G))-

Thanks to Step 4 and Step 5, this proves the wanted result.
O

Proposition-Definition 3.1.25. Let « € Emb(G). There exists an unique topological

k-module isomorphism iso™* : /(/l\]% — /(/l\gR such that the following diagram
1’}]]3 isoVt ﬁGDR

(3.34) "1% l"lDR
(B . A/DR
MN M, 4 MG

commutes.

Proof. Let us construct a topological module morphism iso™* : ./\//TJ% — ./\//TgR over the
topological algebra morphism iso”* : V]% — VER. We consider the composition

(3.35) P ko, poR —lon, DR,
This composition sends the k-submodule 17]}\3,(X0 — 1) to 0. Indeed, this comes from
the fact that (335 is a module morphism over the algebra morphism iso”** and the
following computation

iSOV’L(XQ —1) =g, exp (%eo) —1=g (exp (%eo) — 1) +(g.—-1) € 9DR60 + 17DR(gL -1)
Therefore, thanks to Proposition B.1.23] the composition (3.35]) factorises into a k-
module morphism iso™* : ./\//TJ% — X,TgR which is a module morphism over the algebra
morphism iso”* : 17]]3 — 17GDR.
Next, let us show that iso™* : /(/l\]% — ./\//TgR is an isomorphism. Recall from Proposi-
tion that iso"V* : 17\/\]% — WGDR is an algebra submorphism of iso” : 911\3, — 17GDR.
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As a result, isoM* : ./(/l\]% — ./\//\lgR is a module morphism over the algebra isomorphism
iso"Vt W\]% — )7\781)”. In addition, ./T/(\]% and ./T/(\BR are both free rank 1 modules over
17\/\]% and WgR respectively and iso™* sends 1p to 1pr and therefore a basis of the
source to a basis of the target. Thus iso™* : ./\//TJ% — /(/l\gR is a module isomorphism
over is0”™* and then a k-module isomorphism. O
Remark 3.1.26. Let us notice that we have the following equality of k-submodules of
PDR,

V& (g explen) = 1) = VEReo + V5" (g, — 1).
Indeed, since we have that

goexp(eg) — 1 = g.(exp(eo) — 1) + (9. — 1),

this gives us the inclusion 17GDR(gL exp(eg) — 1) C 17GDR60 + 17GDR(9L —1). Conversely, the
inclusion ViRey + VER(g, — 1) € VER(g, exp(ep) — 1) follows from

B exp(]\f#(l +grexp(eg) + -+ g " Lexp((N — 1)eg)) (g, exp(eg) — 1)

and from

€0

— (1+g.exp(eo) + -+ + g, exp((N — )eo)) (g, exp(eo) — 1)

:(exp(—eo + % (1+g.exp(eo) + -+ gNTexp((N — 1)@0))) (g.exp(eg) — 1).
Proposition 3.1.27. For any (A, ¥) € k* x G(k((X))), the following pairs are iso-
morphisms in the category k-alg-modyp:

(i) (iso”,iso™*) : (9]]\3,,/(/1\]%) — (98R,/\78R).
(ii) (ison‘,isoM’L) : (W\B,M\]%) — (W\DR,./\//TgR).
Proof.
(i) The fact that iso”* (resp. iso™"*) is a k-algebra (resp k-module) isomorphism
follows from Proposition-Definition B.I.8| (resp. Proposition-Definition B.1.25]).
Let (a,m) € V¥ x .//\/\(]% There exists v € V§ such that m = v - 1g. We have

M’L( M’L(av ‘1) = isov’b(av) -1pr = isoV’L(a) isoV’L(v) -1pr

M,L(

iso™"*(am) =iso

=is0”(a) iso™* (v - 1g) = is0¥**(a) iso™* (m),
where the second and fourth equalities come from Proposition-Definition [3.1.25]
(ii) The fact that iso”* (resp. iso™*) is a k-algebra (resp k-module) isomorphism
follows from Proposition-Definition B.I.I5l (resp. Proposition-Definition B.1.25]).
One proves, for any (w,m) € )7\7]% X ./T/(\]%, that

iso™t (wm) = iso” (w)iso™ (m)

using the argument of |(i)| and Proposition-Definition B.1.15]
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Corollary 3.1.28. Let « € Emb(G) and ¢ € Aut(G). We have

M,Lod)‘l M
3

iso = né\/l o iso
with 77£4 € Auti-alg,,, (./\//TgR) given in Lemma [1.2.3] (i)}

Proof. It follows from Proposition [3.1.9/thanks to the commutativity of diagrams (3.34])
and (L.39). O

3.2. The coproducts ﬁyVV’B and 3?\{473.

3.2.1. Comparison isomorphisms.

Definition 3.2.1. For (¢, A, V) € Emb(G) x k* x G(k((X))), we define the topological
k-algebra-module isomorphism

V,(1 V,(10 SB O SDR S
(3.36) (Fcomp(L,g\Kp), Fcomp(hg,\lj))) S (VRLVR) — (VER, VER)
given by
r v.() T v.a)\ _ (r, V(1) r_ V(10 c Vil s Vi
( comp '\ comp(w\’\y)) .—< auty g, - aut 'y ) o (150 ,180 )

Proposition-Definition 3.2.2. For (:,\, V) € Emb(G) x k* x G(k{(X))), we define
the topological k-algebra-module isomorphism

w.( M,(10 o~~~ o~y
(3.37) <Fcomp(h>\(,\1),), FCOHlp(L’)\E\Ij))> c (WR,WER) = WER, WER)
given by
r w,1) r M,(10)\ _ (T, W) T,  M,/(0) Wit s M
< compy, 3 g comp(L’)\&)) .—( aut()\&), aut(A,\P) >o(1so , 180 )

It is such that the following diagrams

/j3 FCOmpz/v}fl)> /\D
LA, N R
WN 7 WN
(3.38) j j
1B {’DR
VN r V.(1) VN
COMP(, X\, w)
and
Fcompv,(lo),L
B () {>’DR
Vn Va
(3.39) =n) “Tom
A /B . A DR
M . YR Mg
Comp(A‘q,)

commute.
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Proof. From Proposition-Definition [2.1.4] and Proposition B.1.27l(ii), we have that the

W, (1) M, (10)
) AUty

the composition is then an isomorphism in k-alg-modi,,. Next, the commutativity
of the diagrams follows from the commutativity of Diagrams (2.9) and (BI9) and

Diagrams (2.10) and (3.34]). O

Recall the action of the group (Aut(G) x k™) x G(k((X))) on Emb(G) xk* x G(k((X)))
given in Corollary One has the following result:

pairs (Faut > and (isoW’L,isoW’L) are isomorphisms in k-alg-modgep;

Proposition 3.2.3. For (¢,\, V) € Aut(G) xk* xG(k{((X))) and (¢,v,®) € Emb(G) x
k* x G(k({(X))), we have

(i) Fcompz,’ggp)_(b7y,¢) = Fautz/(\;”)(j\)lj) o Fcompz\fl’,(,lq)))’b.
0 o = TP
Proof.

(i) We have

Feomp( iy () = Fcomp&’él_)l)\U’\p@mb(A.@)) = Tt ooy © 50"
= Fautz/:”\%) o Fautz/:;gizq))) o 773;\/ o iso™
=T autz/:”l%) o UZV ol autz/:”cg) o isoV
— TV T w,(1)

(6A¥) © COMD(,,, 4);

where the second equality follows from Lemma [[L43] the third equality from
Corollary ZT.7 and Corollary and the fourth one from Corollary ZZTITI[(i)}
(ii) We have

T M., (10) T M., (10) T M., (10) - M op™1
COMPIH N 0 (1 ®) = COMP0g1 Ty (o)) = AUEN Wy (v, (@) © 1507
M0 T M0 MM,
= Taut(y ) o aut(y,%@))o% oiso™™*

= auté\;é,l)o) o 17(;\/‘ o Fauté\:éio) o iso

_ .., M,(10) T M,(10)
= aufiy ) O Comp, gy

M

where the second equality follows from Lemma [[L4.3] the third equality from
Corollary 2.7l and Corollary B.I.28land the fourth one from Corollary ZTITI[(ii)]

0

3.2.2. The coproducts ﬁw’B and A?VA’B.

Theorem 3.2.4. The composition
r w, (1) | ®2 - r M, (10)) B2 -t ~W,DR R M,DR r w,(1) T M, (10)
(( Comp(L7L7¢)) ) , (( compy, ’ ) ) ) o (AG’ LAGY ) o ( comp, ', 5y, COMP, 5 )

(WE M) = (WR)*2, (MR)*?)
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is independent of the choice of (1,v,®) € DMRy (k). We denote it (KLV’B,A%’B).
Moreover, the pair (AE/VV,B’ 3%’]3) is an element of COPy_alg-modop (W\j%,ﬂ/l\]%)
Proof. Let (t,v,®) and (/,v/,®") € DMRy (k). Thanks to Proposition [LZ4.TI4] there

exists a unique (¢, A, ¥) € (Aut(G) x k*) x DMR§ (k) such that (//,v/, @) = (¢, \, ¥) -
(t,v,®). We have

—1
T M,(10) TMDR T M,(10)
<< compy,,’,, q),)> > o Ay © " COmMpP(,’ g
_((r M, (10) @2\ 7! AMDR T M, (10)
= | [ OmP 3 0). (@) °Ba 0 COMPAw)(Lr,9)
—1 —1
_ M, (10 ,(10) ANM,DR M, (10) M, (10
= ((Fcomp(b u(<1>))) ) o <( aut( A )) > oAy o Faut(d)’kq}) o Fcomp(bﬁyf(b))

@2\ 1 .
= ((Fcomp(fi’(w)) > o AéA’DR o Fcompé/ly%(;)

where the second equality comes from Proposition and the last equality from
the inclusion (Aut(G) X kX) X DMRg(k) - Stab(Aut(G)ka)[Xg(k«X)))(A'/G\/I’DR)(I{) of
Corollary Similary, we prove that

@2\ —1 T
((Fcomp(L (1/)q>,)> ) o Aév’ Ro 1"comp( (1/)@/) = ((Fcompz/bvl,(lqu ) o Aév’DR o 1"comp}/v (42)

by replacing M, (10) (resp. M,DR) by W, (1) (resp. W, DR) in the exponents and the
use of Proposition by that of Proposition and using the the inclusion
(Aut(G) x k*) x DMR§ (k) C Stab(aui(cyxic g (B ) (k) of Corollary

Finally, (AW’B,A% ’B> is an element of Copk—alg—modtop (W\j%,ﬂ/l\]%) since the pair

<32/’DR, Agt ’DR) is an element of COPy_aig-mod,ep W\DR,/\//\IgR) thanks to Lemma

[LT3 and the pair (Fcomp(L )\(1\13) r compé/&(\y))> is a k-algebra-module isomorphism
thanks to Proposition-Definition [3 O

AM,B
Corollary 3.2.5. We have A" (15) = 15°.
Proof. From Theorem B.2Z4] let us compute 3%’]3(13) by considering an element
(t, A\, ¥) € DMRy (k). First, we have

M, , _
(3.40)  Teomp] ' (15) = Tcomp( {9 (1) - g = T3 (—e)B(¥ @ 1) - 1pg = ¥*.

Therefore,

o " comp, A )

M(IO ®2) 7! AMDR (gx
comp(mm o Ay, (T™)
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where the first and last equalities come from (3.40]) and the second one from the fact
that U € DMRY (k). O

Corollary 3.2.6.
(i) The pair (V/\Z%, KVNV’B) is an object in the category k-Hopfy,,.
(i) The pair (/(/l\]%, A?VA’B) is an object in the category k-coalgy .
(i1i) The pair <()7V\]%, AVNV’B), (.//\/\(]%, A%B)) is an object in the category k-HAMCqp,.

Proof.
(i) From Theorem [3.2.4] it follows that 3?3 is an algebra morphism. In addition,

one checks that the coassociativity of AVNV’B follows from the coassociativity of
AWDR
a

ii) From Theorem it follows that AP is a k-module morphism. In addition,
N

one checks that the coassociativity of A%B follows from the coassociativity of
AMDR
a

iii) It follows from |(i)| and |(ii){and the fact that the pair AW’B, AMBY is an element
N N
Of COpk—alg—modtop (W/\B s MN) .
O

4. EXPRESSION OF THE TORSOR DMRy (k) IN TERMS OF THE BETTI AND DE RHAM
COPRODUCTS

In this section, we show that DMR (k) is a subtorsor of a stabilizer torsor of
the pair of coproducts <3%’B,3g’DR). In §471 we define the setwise stabilizers

Stabgmb(@) xk* xg(k((X))) (A?VA’Ba zé/[’DR) (k) and Stabgu(G) xkx xg(k((X))) (ﬁmB, ﬁé\}’DR) (k)
and show that they are equipped with a torsor structure for the actions of the stabilizer

~ W,DR
BrOUPS Stab(xui() k) wae((x))) (AF ™) () and Stab(aus(c) ko ge(())) (AG ) (k)
respectively. In §4.2.T] we obtain a chain of inclusions of torsors involving these stabi-

lizers and DMRy (k).
4.1. The stabilizer subtorsors.

Definition 4.1.1.
(1) We denote Stabgmpa)xk* xG(k((X))) (&K,V’B, ﬁé\)’DR) (k) the setwise stabilizer of

the pair of coproducts <£]1<[V,B’AEV,DR) € COPk-algtop(W]%) x Copyalg,,, (WGDR)
given by

Stabgmb () xk* xG k(X)) <3W’B,£2}’DR> (k) =
{(L, v, ®) € Emb(G) x k* x G(k((X)))| (Fcompz\fig))@g o BB = RWPR o Toomp)” ) }
(ii) We denote Stabgy,(a)xk* xg(k((x))) (ﬁf\\;"B, ﬁé/l’DR> (k) the setwise stabilizer of
the pair of coproducts (3%"}3, ﬁé/l’DR> € COPy-modsop (./(/l\]%) X COPk-modyop (W\GDR)
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given by

Stabpmb (@) xk* xG k(X)) <£§\VA7B’ Ag’DR> k) :=

{(L, v,®) € Emb(G) x k* x G(k{((X)))| (Fcompf\f o 0))) o AME = ﬁgA’D o Fcomp(L V(cpo))}

Remark 4.1.2. TheoremB.2.4limplies that Stabg,)xkx xg(k((x))) <3¥’B, AZV,DR> (k)

and Stabpgy,(a) xkx xG k(X)) (A%B, Ag/t,DR) (k) contain DMRy (k), which implies that
these are nonempty sets.

Proposition 4.1.3.
i. The pair

(Stabiauay ey (B8 ™) (6), Stabeumpa) g (AN AE) (1))
is a subtorsor of ((Aut(G) x k*) x G(k((X))), Emb(G) x k* x Q(k((X>>))
1. The pair
Stab ALYPR) (k), Stab AVUP ALYPRY (k
tabaut(@) xk* )k G(k((X))) (k), Stabgmb(a)xkx xok((x)) (AN > Ag (k)

is a subtorsor of ((Aut(G) x k*) x G(k((X))),Emb(G) x k* x Q(k((X>>))

In order the prove this, we will need the following Lemma:

Lemma 4.1.4 ([EF2, Lemma 2.6]). Let (H,T) be a torsor, and let V, V' be k-modules.
Let p : H — Autyg_moda(V) be a group morphism and let p' : T — Isox.moa(V', V') be
a map such that for any h € H, x € T, one has p'(h-x) = p(h) o p/(x). Let v € V
and v' € V'. Then Stabg(v) := {h € H|p(h)(v) = v} is a subgroup of H, and either
Stabp(v,v") :={z € T'| p/(v') = v} is empty, or (Stabgy(v),Stabr(v,v")) is a subtorsor
of (H,T).

Proof of Proposition [{.1.3 It follows from Lemma [A.1.4] by setting :
o (H,T) = ((Aut(G) x k) x G(k((X))), Emb(G) x k* x G(k((X))));

V = CoPymod (WER) (resp. V = Copymoa(MPR));

V= COpk—modo//\j]%) (resp. V= Copk-mod(m));

AW,DR A M,DR
v=Ag, (resp. v =Ag"");

o v = AVNV’B (resp. v = A%B)'

)

w,(1) \©? w,a) \ !
p:(,ANY) — <V > DYy < aut(d),;’\)p)) o DI, o <Faut(¢7§\ \)P)) € V) (resp.

®2 -1
pi(d,\V)— <V > DAL e <Fauté;l,’)€71\g))> o D{t o < aut, /\(1\2))) € V));
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®2 ~1

o p:(d,\V) — (V’ > DY <Fcompz/(\;’)(\lep)> oDY o <Fcompz/(\;’)(\1\)11)> € V) (resp.
®2 -1

P (N 0) (V’ > DY e <Fcompé\;’§l\g))) oD{to (Fcompé\;}gl\g))) € V>)
Finally, for (¢, \,¥) € H and (¢,v,®) € T, the identity
P((¢, A, \II) : (L’ v, (I))) = p(¢’ A, \II) 0 p,(L, v, (I))
follows from Proposition [3.2.3] O

4.2. Inclusion of stabilizer torsors.

Theorem 4.2.1. We have the following inclusions of torsors
((Aut(G) x k*) x DMRY (k), DMRy (k))

N

(Stab(Aut(G)ka)l><g(k<(X))) (ﬁé“DR) (k), Stabgmb(a) xk* xG k(X)) (3%’]37 3??’“‘) (k))
N

<Stab(Aut(G)><kX)xQ(k((X))) <32)’DR) (k), Stabgmb (@) xkx xG k(X)) (M’B,ﬁé"’m) (k)>
N

((Aut(@) x 1) < Gl1e{ (X)), Bmb (G) x k* x G(k((X))))

In order the prove this, we will need the following Lemmas:

Lemma 4.2.2 ([EF2, Lemma 2.3]). Let (H,T) be a torsor and let (H',T") and (H",T")
be subtorsors of (H,T) such that T'NT" # @. Then (H' N H",T'NT") is a subtorsor
of both (H',T") and (H",T"), therefore of (H,T).

Lemma 4.2.3 ([EF2, Lemma 2.7]). Let (H,T) be a torsor and let (Hy,Ty) and (Hq,T})
be subtorsors of (H,T) such that Ty C Ty. Then (Hy,Tp) is a subtorsor of (Hy,T1). If,
moreover, Hy = Hy then the subtorsors (Hy,Ty) and (Hy,T1) are equal.

Proof of Theorem [{.2.1] The group-part inclusion is shown in Corollary 22,5l The first
and last set-part inclusions are immediate. It remains to show that

StabEmb (@) xkx xG(k((X))) (ﬁva’B, ﬁg’m) (k) C Stabmumb(c)xix xg(k((x))) (ﬁy’Bvﬁg’DR) (k).
In Lemmas and 23], set

(H,T) = ((Aut(G) x K*) x G(K((X))), Emb(G) x k* x G(K((X)))).
First, let us apply Lemma for

/ AN M, M, NM, 3 .
o (H',T') = (Stab(Aut(G)ka)xg(k<<X>>) (AG DR) (k), Stabgp ) xkx x g(k((X))) (AN BAY DR) (k))7

g (HU,T”) = (Stab(Aut(G)ka)xg(k(<X>)) (33,1311) (k)’StabEmb(G)ka xG(k((X))) <AJKIV’B’£\C/¥V’DR> (k)>'
From Remark ET.2] we have that 7" N T" # &. Therefore, (H' N H", T'NT") is a
subtorsor of (H”,T"). Second, let us apply Lemma [£23] for

o (Ho,Ty) = (H' N H",T'NT");
o (H1,T1)=(HT).
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We have that Ty = T NT"” c T = T;. In addition,

HQZH,HH”:H,:Hl,

where the second equality follows from the stabilizer group inclusion in Corollary
Finally, it follows that 7/ NT"” = Ty = Ty = T'. Thus T C T”, which is the wanted

inclusion of setwise stabilizers. O
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