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THE CYCLOTOMIC DOUBLE SHUFFLE TORSOR IN TERMS OF

BETTI AND DE RHAM COPRODUCTS

YADDADEN KHALEF

Abstract. In order to describe the double shuffle and regularization relations be-
tween multiple polylogarithm values at N th roots of unity, Racinet attached to each
finite cyclic group G of order N and each group embedding ι : G → C×, a Q-scheme
DMR

ι which associates to each commutative Q-algebra k, a set DMR
ι(k) that can be

decomposed as a disjoint union of sets DMR
ι
λ(k) with λ ∈ k. He also exhibited a Q-

group scheme DMR
G
0 and showed, for any commutative Q-algebra k and any λ ∈ k

×,
that DMR

ι
λ(k) is a torsor for the action of DMR

G
0 (k). Then, Enriquez and Furusho

showed for N = 1 that a subscheme DMR
ι
× of DMR

ι is a torsor of isomorphisms re-
lating “de Rham” and “Betti” objects. In previous work, we reformulated Racinet’s
construction in terms of crossed products and identified Racinet’s coproduct with a

coproduct ∆̂M,DR
G defined on a module M̂DR

G over an algebra ŴDR
G , which is equipped

with its own coproduct ∆̂W,DR
G . In this paper, we define the main ingredients for a

generalization of Enriquez and Furusho’s result to any N ≥ 1: we exhibit a module

M̂B
N over an algebra ŴB

N and we prove the existence of two compatible coproducts

∆̂W,B
N and ∆̂M,B

N on ŴB
N and M̂B

N respectively such that DMR
ι
× is contained in the

torsor of isomorphisms relating ∆̂W,B
N (resp. ∆̂M,B

N ) to ∆̂W,DR
G (resp. ∆̂M,DR

G ).
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Introduction

A multiple L-value (MLV in short) is a complex number defined by the following
series

L(k1,...,kr)(z1, . . . , zr) :=
∑

0<m1<···<mr

zk11 · · · zkrr

mk1
1 · · ·mkr

r

where r, k1, . . . , kr ∈ N∗ and z1, . . . , zr in µN the group of N th roots of unity in C,
where N is an integer ≥ 1. This series converges if and only if (kr, zr) 6= (1, 1). These
values satisfy a set of algebraic relations; our main interest here are the double shuffle
and regularisation ones.

Understanding the double shuffle and regularisation relations has been greatly im-
proved thanks to Racinet’s work [Rac]. He generalises the group µN to a finite cyclic
group G and attaches to each pair (G, ι) of a finite cyclic group G and a group injection
ι : G → C×, a Q-scheme DMR

ι which associates to each commutative Q-algebra k, a
set DMR

ι(k) that can be decomposed as a disjoint union of sets DMR
ι
λ(k) for λ ∈ k (see

[Rac, Definition 3.2.1]). The double shuffle and regularisation relations on MLVs are
then encoded in the statement that a suitable generating series of these values belongs
to the set DMR

ιcan
i2π (C) where ιcan : G = µN → C⋆ is the canonical embedding. Racinet

also proved that for any pair (G, ι), the set DMR
ι
0(k) equipped with the “twisted Mag-

nus” product (see (1.13)) is a group that is independent of the choice of ι. It is therefore
denoted DMR

G
0 (k).

The main result of Racinet in [Rac, Theorem I] is that, for each pair (λ, ι) where
λ ∈ k× and ι : G →֒ C×, the set DMR

ι
λ(k) is equipped with a torsor structure for

the action of the group (DMR
G
0 (k),⊛). For any ι : G →֒ C×, this yields a torsor

structure on the set DMR
ι
×(k) :=

⊔

λ∈k×

DMR
ι
λ(k) for the action of a semidirect product

group k× ⋉DMR
G
0 (k) (see Proposition 1.3.10). This gives rise to a torsor structure on

DMR×(k) :=
⊔

ι

DMR
ι
×(k) (where ι runs over all group embeddings from G to C×) for

the action of the semidirect product group (Aut(G)×k×)⋉DMR
G
0 (k) (see Proposition

1.4.14).
On the other hand, we introduced in [Yad] a crossed product formalism and showed

that Racinet’s objects can be expressed within it. This constitutes the “de Rham”
side of the double shuffle theory. In this framework, the crossed product algebra is

identified to a topological k-algebra V̂DR
G defined by a presentation with generators and

relations (see Proposition 1.1.1). Next, Racinet’s objects are given in the form of a

subalgebra ŴDR
G of V̂DR

G and a quotient module M̂DR
G of the left regular V̂DR

G -module.

The algebra ŴDR
G is equipped with a Hopf algebra coproduct ∆̂W ,DR

G and the module

M̂DR
G is equipped with a compatible coalgebra coproduct ∆̂M,DR

G .

Following the stabilizer interpretation of DMR
G
0 (k) given by Enriquez and Furusho in

[EF0], we defined two stabilizers Stab(∆̂M,DR
G )(k) and Stab(∆̂W ,DR

G )(k) for the action of
grouplike elements equipped with the twisted Magnus product and therefore obtained
the following chain of inclusions

DMR
G
0 (k) ⊂ Stab(∆̂M,DR

G )(k) ⊂ Stab(∆̂W ,DR
G )(k),
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which is a generalisation of the G = {1} result of [EF2, Theorem 3.1]. This enables us
to obtain the following semidirect product group chain of inclusions

Result I (Corollary 2.2.5).

(Aut(G) × k×)⋉DMR
G
0 (k) ⊂ (Aut(G)× k×)⋉ Stab(∆̂M,DR

G )(k)

∩

(Aut(G)× k×)⋉ Stab(∆̂W ,DR
G )(k)

For G = {1} Enriquez and Furusho introduced a “Betti” formalism of the double
shuffle theory in [EF1]. It is based on the filtered algebra VB, which denotes the group
algebra over k of the free group of rank 2 denoted F2 with generators X0 and X1 and

equipped with the filtration induced by the augmentation ideal. The completion V̂B is

a topological k-algebra. Next, we have a Hopf algebra (ŴB, ∆̂W ,B) which consists of a

subalgebra ŴB of V̂B linearly generated by 1 ∈ V̂B and the left ideal generated byX1−1.
It is presented as an algebra with generators X1, X

−1
1 , Y +

n = −(X0 − 1)n−1X0(X1 − 1)

and Y −n = −(X−10 −1)n−1X−10 (X−11 −1) for n ∈ N∗, with relationX1X
−1
1 = X−1X1 = 1.

In addition, we have a Hopf algebra coproduct ∆̂W ,B : ŴB → (ŴB)⊗̂2 given by

∆̂W,B(X±11 ) = X±11 ⊗X±11 and for n ∈ N∗, ∆̂W,B(Y ±n ) = Y ±n ⊗ 1 + 1⊗ Y ±n +
∑

k,l∈N∗

k+l=n

Y ±k ⊗ Y ±l .

Finally, we have a coalgebra (M̂B, ∆̂M,B) which consists of a quotient module M̂B =

V̂B/V̂B(X0 − 1) isomorphic to ŴB, as a k-module (see [EF1, (2.1.1)]) together with a

coalgebra coproduct ∆̂M,B compatible with the coproduct ∆̂W ,B.

In §3, we construct analogues of the Hopf algebra (ŴB, ∆̂W ,B) and of the module-

coalgebra (M̂B, ∆̂M,B), for a finite cyclic group G of order N . It is based on the
filtered algebra VB

N , which denotes the group algebra kF2 equipped with the filtration
induced by the ideal ker(kF2 → kµN ); where kF2 → kµN is the algebra morphism

induced by the group morphism F2 → µN given by X0 7→ e
i2π
N and X1 7→ 1. Its

completion is the inverse limit of the projective system induced by the filtration and is

denoted V̂B
N . It is a topological algebra isomorphic to V̂DR

G (see Proposition-Definition
3.1.8). Next, we define a filtered algebra WB

N which is linearly generated by 1 ∈ VB
N

and the left ideal generated by X1 − 1 and whose filtration is induced by that of VB
N .

Its completion ŴB
N is isomorphic to ŴDR

G (see Proposition-Definition 3.1.15). We also

define a filtered module MB
N which consists of the quotient module kF2/kF2(X0 − 1)

and whose filtration is induced by that of VB
N . Its completion M̂B

N is isomorphic to

M̂DR
G (see Proposition-Definition 3.1.25). We then have compatible Hopf algebra and

coalgebra structures on ŴB
N and M̂B

N respectively thanks to the following result:

Result II (Theorem 3.2.4 and Corollary 3.2.6). There exists a topological k-algebra

morphism ∆̂W ,B
N : ŴB

N → (ŴB
N )⊗̂2 and a topological k-module morphism ∆̂M,B

N :

M̂B
N → (M̂B

N )⊗̂2 that endows ŴB
N and M̂B

N respectively with compatible Hopf alge-
bra and coalgebra structures.

Finally, in §4, we deduce the following result:
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Result III (Theorem 4.2.1). DMR× is contained in the torsor of isomorphisms relating

∆̂W ,B
N (resp. ∆̂M,B

N ) to ∆̂W ,DR
G (resp. ∆̂M,DR

G ).

Acknowledgements. The author is grateful to Benjamin Enriquez for the helpful
discussions, ideas and careful reading.

Notation. Throughout this paper, G is a (multiplicative) finite cyclic group of order N
and k is a commutative Q-algebra. For a k-algebra A, an element x ∈ A and a left
A-module M we consider:

• ℓx : M → M to be the k-module endomorphism defined by m 7→ xm and if x is
invertible, then ℓx is an automorphism.

• rx : A → A to be the k-module endomorphism defined by a 7→ ax and if x is
invertible, then rx is an automorphism.

• Adx : A → A to be the k-algebra automorphism defined by a 7→ xax−1 with x ∈ A×.

0. Some categories of algebra-modules

First, let us recall various categories introduced in [EF4] that will be used throughout
this paper:

• k-mod is the category of k-modules.
• k-alg is the category of k-algebras.
• k-alg-mod is the category of pairs (A,M) where A is a k-algebra and M is a left
A-module.

• k-coalg is the category of coassociative cocommutative coalgebras over k.
• k-Hopf is the category of Hopf algebras over k.
• k-HAMC is the category of Hopf-Algebra-Module-Coalgebras where objects are pairs(

(A,∆A), (M,∆M )
)
where (A,∆A) is a Hopf algebra and (M,∆M ) is a coalgebra such

that
◮ The pair (A,M) is an algebra-module.
◮ For (a,m) ∈ A×M , we have ∆M(am) = ∆A(a)∆M (m).

• k-modtop is the category of topological k-modules with objects pairs (M, (F iM)i∈N),
where M is a k-module and (F iM)i∈N is a decreasing filtration of M such that
the map M → lim

←−
M/F iM is a k-module isomorphism, i.e. M is complete and

separated for the topology defined by the filtration (F iM)i∈N. It is equipped with a
tensor product ⊗̂, with respect to which it is a symmetric tensor category.

• k-algtop is the category of topological k-algebras. i. e. algebras in the category
k-modtop in the sense of [McL].

• k-alg-modtop is the category of topological k-algebra-modules. i. e. k-algebra-
modules in the category k-modtop in the sens of [McL].

• k-coalgtop is the category of topological k-coalgebras. i. e. coalgebras in the category
k-modtop in the sens of [McL].

• k-Hopftop is the category of topological k-Hopf algebras. i. e. Hopf algebras in the
category k-modtop in the sens of [McL].

• k-HAMCtop is the category of topological Hopf-Algebra-Module-Coalgebras. i. e.
Hopf-Algebra-Module-Coalgebras in the category k-modtop in the sens of [McL].
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Finally, let C be a symmetric tensor category and O an object of C. We define

CopC(O) to be the set of morphisms D : O → O⊗̂2. One checks that the group
AutC(O) acts on CopC(O) by

(0.1) α ·D := α⊗2 ◦D ◦ α−1,

with α ∈ AutC(O) and D ∈ CopC(O).

1. The double shuffle torsors

In this section, we recall the various double shuffle torsors arising from Racinet’s work
in [Rac]. In §1.1, we recall the basic framework of Racinet’s formalism. Namely, two

Hopf algebras (k〈〈X〉〉, ∆̂) and (k〈〈Y 〉〉, ∆̂alg
⋆ ), a coalgebra (k〈〈X〉〉/k〈〈X〉〉x0 , ∆̂

mod
⋆ )

and a group (G(k〈〈X〉〉),⊛). Additionally, we also recall the basic material of the

crossed product formalism introduced in [Yad] which consists of an algebra V̂DR
G and its

relation with a Hopf algebra (ŴDR
G , ∆̂W ,DR

G ) isomorphic to the Hopf algebra (k〈〈Y 〉〉, ∆̂alg
⋆ )

and a coalgebra (M̂DR
G , ∆̂M,DR

G ) isomorphic to the coalgebra (k〈〈X〉〉/k〈〈X〉〉x0 , ∆̂
mod
⋆ ).

In §1.2, we introduce the double shuffle set DMR
ι
λ(k) for λ ∈ k and ι : G → C× an

injective group morphism, which is a torsor over the double shuffle group DMR
G
0 (k), a

subgroup of G(k〈〈X〉〉),⊛) ([Rac]). In §1.3, we define a set DMR
ι
×(k) =

⊔

λ∈k×

DMR
ι
λ(k)

and show that it is a torsor for a group given by a semidirect product arising from an

action of k×. Finally, in §1.4, we define a set DMR×(k) =
⊔

ι

DMR
ι
×(k) where ι runs

over all injections G → C× and show that it is a torsor for a group given by semidirect
product arising from an action of Aut(G)× k×.

1.1. Preliminaries.

1.1.1. Basic objects of Racinet’s formalism. Let k〈〈X〉〉 be the free noncommutative
associative series algebra with unit over the alphabet X := {x0} ⊔ {xg|g ∈ G}. It is
complete graded with deg(x0) = deg(xg) = 1 for g ∈ G. This algebra provides an

object in k-Hopftop when equipped with the coproduct ∆̂ : k〈〈X〉〉 → k〈〈X〉〉⊗̂2, which

is the unique topological k-algebra morphism given by ∆̂(xg) = xg ⊗ 1 + 1 ⊗ xg, for
any g ∈ G⊔{0} ([Rac, §2.2.3]). Let then G(k〈〈X〉〉) be the set of grouplike elements of

k〈〈X〉〉 for the coproduct ∆̂, i.e. the set

(1.1) G(k〈〈X〉〉) = {Ψ ∈ k〈〈X〉〉× | ∆̂(Ψ) = Ψ⊗Ψ},

where k〈〈X〉〉× denotes the set of invertible elements of k〈〈X〉〉. Since (k〈〈X〉〉, ∆̂) is a
Hopf algebra, G(k〈〈X〉〉) is a group for the product of k〈〈X〉〉.

The group G acts on k〈〈X〉〉 by topological k-algebra automorphisms by g 7→ tg,
where for any g ∈ G, the topological k-algebra automorphism tg is given by tg(x0) =
x0, tg(xh) = xgh for h ∈ G ([Rac, §3.1.1]). For any g ∈ G, we have

(1.2) ∆̂ ◦ tg = t⊗2g ◦ ∆̂,

this can be verified by checking this identity on generators since both sides are given as
a composition of k-algebra morphisms. As a consequence, for any g ∈ G, the k-algebra
automorphism tg : k〈〈X〉〉 → k〈〈X〉〉 restricts to a group automorphism of G(k〈〈X〉〉).
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Let q be the k-module automorphism of k〈〈X〉〉 given on the topological k-module
basis

(
xn1
0 xg1x

n2
0 xg2 · · · x

nr
0 xgrx

nr+1

0

)
r,n1,...,nr+1∈N

g1,...,gr∈G

of k〈〈X〉〉 ([Rac, §2.2.7]) by

q(xn1
0 xg1x

n2
0 xg2 · · · x

nr
0 xgrx

nr+1

0 ) = xn1
0 xg1x

n2
0 x

g2g
−1
1

· · · xnr
0 x

grg
−1
r−1

x
nr+1

0 .

For (n, g) ∈ N>0×G, set yn,g := xn−10 xg. Let Y := {yn,g|(n, g) ∈ N>0×G}. We define
k〈〈Y 〉〉 to be the topologically free k-algebra over Y , where for every (n, g) ∈ N>0×G,
the element yn,g is of degree n. One shows that k〈〈Y 〉〉 is equal to the k-subalgebra

k⊕
⊕

g∈G

k〈〈X〉〉xg of k〈〈X〉〉 ([Rac, §2.2.5] and [EF0, §2.2]).

Let ∆̂alg
⋆ : k〈〈Y 〉〉 → (k〈〈Y 〉〉)⊗̂2 be the unique topological k-algebra morphism such

that for any (n, g) ∈ N>0 ×G

(1.3) ∆̂alg
⋆ (yn,g) = yn,g ⊗ 1 + 1⊗ yn,g +

n−1∑

k=1
h∈G

yk,h ⊗ yn−k,gh−1.

The element ∆̂alg
⋆ ∈ Copk-algtop(k〈〈Y 〉〉) is called the harmonic coproduct ([Rac, §2.3.1])

and the pair (k〈〈Y 〉〉, ∆̂alg
⋆ ) is an object of k-Hopftop.

Let us consider the topological k-module quotient k〈〈X〉〉/k〈〈X〉〉x0 . The pair
(k〈〈Y 〉〉,k〈〈X〉〉/k〈〈X〉〉x0) is an object of the category k-alg-modtop. The restriction
to k〈〈Y 〉〉 of the projection morphism πY : k〈〈X〉〉 → k〈〈X〉〉/k〈〈X〉〉x0 is an isomor-
phism, therefore k〈〈X〉〉/k〈〈X〉〉x0 is free of rank 1 over k〈〈Y 〉〉. It follows that there

is a topological k-module morphism ∆̂mod
⋆ ∈ Copk-modtop

(k〈〈X〉〉/k〈〈X〉〉x0) uniquely
defined by the condition that the diagram

(1.4)

k〈〈Y 〉〉 k〈〈Y 〉〉⊗̂2

k〈〈X〉〉/k〈〈X〉〉x0 (k〈〈X〉〉/k〈〈X〉〉x0)
⊗̂2

∆̂alg
⋆

πY π⊗2
Y

∆̂mod
⋆

commutes. The pair (∆̂alg
⋆ , ∆̂mod

⋆ ) is an element of Copk-alg-modtop(k〈〈Y 〉〉,k〈〈X〉〉/k〈〈X〉〉x0).

The pair (k〈〈X〉〉/k〈〈X〉〉x0 , ∆̂
mod
⋆ ) is an object of k-coalgtop and the pair

(
(k〈〈Y 〉〉, ∆̂alg

⋆ ),

(k〈〈X〉〉/k〈〈X〉〉x0 , ∆̂
mod
⋆ )

)
is an object of k-HAMCtop.

1.1.2. Basic objects of the crossed product formalism. Let V̂DR
G be the complete graded

algebra generated by {e0, e1} ⊔G where e0 and e1 are of degree 1 and elements g ∈ G
are of degree 0 satisfying the relations:

(i) g × h = gh; (ii) 1 = 1G; (iii) g × e0 = e0 × g;

for any g, h ∈ G; where “×” is the algebra multiplication1([Yad, §2.1.1]).
Recall that the map g 7→ tg defines an action of G on k〈〈X〉〉 by k-algebra au-

tomorphisms. One then considers the crossed product algebra k〈〈X〉〉 ⋊ G for this

1which we will no longer denote if there is no risk of ambiguity.
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action, which is the k-module k〈〈X〉〉 ⊗ kG equipped with the product given for any
a, b ∈ k〈〈X〉〉 and any g, h ∈ G by ([Bou07, Chapter 3, Page 180, Exercise 11])

(1.5) (a⊗ g) ∗ (b⊗ h) = a tg(b)⊗ gh.

Proposition 1.1.1 ([Yad, Proposition 2.1.3]). There is a unique k-algebra isomor-

phism β : k〈〈X〉〉⋊G → V̂DR
G such that x0 ⊗ 1 7→ e0 and for g ∈ G, xg ⊗ 1 7→ −ge1g

−1

and 1⊗ g 7→ g.

Let ŴDR
G be the complete graded k-subalgebra of V̂DR

G given by

(1.6) ŴDR
G := k⊕ V̂DR

G e1.

It is freely generated by the family

Z = {zn,g := −en−10 ge1 | (n, g) ∈ N>0 ×G},

with deg(zn,g) = n ([Yad, Proposition 2.1.5.(b)]). As a consequence, there is a unique

k-algebra isomorphism ̟ : k〈〈Y 〉〉 → ŴDR
G given for (n, g) ∈ N>0 ×G by yn,g 7→ zn,g.

One then has a unique topological k-algebra morphism ∆̂W ,DR
G : ŴDR

G → (ŴDR
G )⊗̂2

such that for any (n, g) ∈ N>0 ×G

(1.7) ∆̂W ,DR
G (zn,g) = zn,g ⊗ 1 + 1⊗ zn,g +

n−1∑

k=1
h∈G

zk,h ⊗ zn−k,gh−1.

The coproduct ∆̂W ,DR
G is an element of Copk-algtop(Ŵ

DR
G ). The pair (ŴDR

G , ∆̂W ,DR
G ) is

an object in the category k-Hopftop and the k-algebra isomorphism ̟ : k〈〈Y 〉〉 → ŴDR
G

is an isomorphism between the Hopf algebras (k〈〈Y 〉〉, ∆̂alg
⋆ ) and (ŴDR

G , ∆̂W ,DR
G ).

Let M̂DR
G be the complete graded k-module given by

M̂DR
G := V̂DR

G

/(
V̂DR
G e0 +

∑

g∈G

V̂DR
G (g − 1)

)
.

Let 1DR be the class of 1 ∈ V̂DR
G in M̂DR

G . The map − · 1DR : V̂DR
G → M̂DR

G is

a surjective k-module morphism with kernel V̂DR
G e0 +

∑

g∈G

V̂DR
G (g − 1). In addition,

the pair (V̂DR
G ,M̂DR

G ) is an object in the category k-alg-modtop. Moreover, one de-
duces from [Yad, Proposition 2.1.6] that there is a unique k-module isomorphism

κ : k〈〈X〉〉/k〈〈X〉〉x0 → M̂DR
G determined by the commutativity of the diagram

(1.8)

k〈〈X〉〉 V̂DR
G

k〈〈X〉〉/k〈〈X〉〉x0 M̂DR
G

β◦(−⊗1)

πY ◦q −·1DR

κ
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On the other hand, the following diagram

(1.9)

k〈〈Y 〉〉 ŴDR
G

k〈〈X〉〉/k〈〈X〉〉x0 M̂DR
G

̟

πY −·1DR

κ

commutes ([Yad, Corollary 2.1.8]). As a consequence, the map − · 1DR : ŴDR
G → M̂DR

G

is a k-module isomorphism since all other arrows of Diagram (1.9) are isomorphisms.
In addition, we obtain the following result

Lemma 1.1.2. The pair (ŴDR
G ,M̂DR

G ) is an object of the category k-alg-modtop. More-

over, M̂DR
G is free ŴDR

G -module of rank 1.

Proof. The first statement follows from the fact that (ŴDR
G ,M̂DR

G ) is the pull-back of

the k-algebra-module (V̂DR
G ,M̂DR

G ) by the k-algebra morphism ŴDR
G →֒ V̂DR

G .
The second statement comes from the fact that k〈〈X〉〉/k〈〈X〉〉x0 is a free k〈〈Y 〉〉-
module of rank 1 thanks to the commutativity of Diagram (1.9). �

This enables us to construct a topological k-module morphism ∆̂M,DR
G ∈ Copk-modtop

(M̂DR
G )

uniquely defined such that the following diagram

(1.10)

ŴDR
G (ŴDR

G )⊗̂2

M̂DR
G (M̂DR

G )⊗̂2

∆̂W,DR
G

−·1DR −·1⊗2
DR

∆̂M,DR
G

commutes, thanks to Lemma 1.1.2 and the free rank 1 property of the ŴDR
G -module

M̂DR
G . The pair (M̂DR

G , ∆̂M,DR
G ) is an object in the category k-coalgtop and the k-

module isomorphism κ : k〈〈X〉〉/k〈〈X〉〉x0 → M̂DR
G is an isomorphism of coalgebras

(k〈〈X〉〉/k〈〈X〉〉x0 , ∆̂
mod
⋆ ) and (M̂DR

G , ∆̂M,DR
G ).

Lemma 1.1.3. The pair
(
∆̂W ,DR

G , ∆̂M,DR
G

)
is an element of Copk-alg-modtop

(
ŴDR

G ,M̂DR
G

)
.

Proof. Let w ∈ ŴDR
G and m ∈ M̂DR

G . Thanks to Lemma 1.1.2 there is a unique

w′ ∈ ŴDR
G such that m = w′ · 1DR. We have

∆̂M,DR
G (w ·m) = ∆̂M,DR

G (ww′ · 1DR) = ∆̂W ,DR
G (ww′) · 1⊗2DR = ∆̂W ,DR

G (w)∆̂W ,DR
G (w′) · 1⊗2DR

= ∆̂W ,DR
G (w)∆̂M,DR

G (w′ · 1DR) = ∆̂W ,DR
G (w)∆̂M,DR

G (m),

where the second and fourth equalities come from the commutativity of Diagram (1.10).
�

As a consequence, the pair
(
(ŴDR

G , ∆̂W ,DR
G ), (M̂DR

G , ∆̂M,DR
G )

)
is an object of k-HAMCtop.

In addition, the pair

(̟,κ) :
(
(k〈〈Y 〉〉, ∆̂alg

⋆ ), (k〈〈X〉〉/k〈〈X〉〉x0 , ∆̂
mod
⋆ )

)
→

(
(ŴDR

G , ∆̂W ,DR
G ), (M̂DR

G , ∆̂M,DR
G )

)

is a morphism of objects of k-HAMCtop.
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1.2. The torsor DMR
ι
λ(k). Let us denote k〈〈X〉〉 → k{words in x0,(xg)g∈G}, v 7→

(
(v|w)

)
w

the map such that v =
∑

w(v|w)w (the empty word is equal to 1).
Let Γ : k〈〈X〉〉 → k[[x]]×,Ψ 7→ ΓΨ the function2 given by ([Rac, (3.2.1.2)])

(1.11) ΓΨ(x) := exp


∑

n≥2

(−1)n−1

n
(Ψ|xn−10 x1)x

n


 .

Definition 1.2.1 ([Rac, Definition 3.2.1]). Let λ ∈ k and ι : G → C× be a group
embedding. We define DMR

ι
λ(k) to be the set of Ψ ∈ G(k〈〈X〉〉) such that

(i) (Ψ|x0) = (Ψ|x1) = 0;

(ii) ∆̂mod
⋆ (Ψ⋆) = Ψ⋆ ⊗Ψ⋆;

(iii) If |G| ∈ {1, 2}, (Ψ|x0x1) = −λ2

24 ;

(iv) If |G| ≥ 3,
(
Ψ|xgι − x

g−1
ι

)
= |G|−2

2 λ;

(v) For k ∈ {1, . . . , |G|/2},
(
Ψ|xgkι − x

g−k
ι

)
= |G|−2k
|G|−2

(
Ψ|xgι − xg−1

ι

)
,

where gι := ι−1(e
i2π
|G| ) and Ψ⋆ := πY ◦ q

(
Γ−1Ψ (x1)Ψ

)
∈ k〈〈X〉〉/k〈〈X〉〉x0 .

Remark 1.2.2.

(i) Thanks to [Rac, §3.2.3], DMR
ι
λ(k) is a non-empty set.

(ii) If |G| ∈ {1, 2}, the embedding ι is unique.

Proposition-Definition 1.2.3 ([Rac, Remark 3.2.2]). For λ = 0, the condition3 (iv)
of Definition 1.2.1 does not depend of the choice of ι. The set DMR

ι
0(k) is then denoted

DMR
G
0 (k) instead.

Proposition 1.2.4. Condition (ii) of Definition 1.2.1 is equivalent to

(1.12) ∆̂M,DR
G (Ψ⋆) = Ψ⋆ ⊗Ψ⋆,

where Ψ⋆ :=
(
Γ−1Ψ (−e1)β(Ψ ⊗ 1)

)
· 1DR ∈ M̂DR

G .

Proof. Thanks to Diagram (1.8), it follows that κ(Ψ⋆) = Ψ⋆. Equality (1.12) then fol-

lows from the fact that κ : (k〈〈X〉〉/k〈〈X〉〉x0 , ∆̂
mod
⋆ ) → (M̂DR

G , ∆̂M,DR
G ) is a coalgebra

isomorphism. �

Recall the set G(k〈〈X〉〉) of grouplike elements of (k〈〈X〉〉, ∆̂) given in (1.1). In
addition to its usual group structure, it is also a group for the “twisted Magnus”
product denoted ⊛ and given for any Ψ,Φ ∈ G(k〈〈X〉〉) by

(1.13) Ψ⊛ Φ := ΨautΨ(Φ),

where autΨ is the topological k-algebra automorphism of k〈〈X〉〉 given by ([EF0], §4.1.3
based on [Rac], §3.1.2)

(1.14) x0 7→ x0 and for g ∈ G,xg 7→ Adtg(Ψ−1)(xg).

Proposition 1.2.5 ([Rac, Theorem I]). Let λ ∈ k and ι : G → C× be a group embed-
ding.

(i) The pair (DMR
G
0 (k),⊛) is a subgroup of (G(k〈〈X〉〉),⊛).

2This function is related to the classical gamma function as established in [Fu11], page 344 thanks
to [Dri90].

3This also holds for condition (v).
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(ii) The group (DMR
G
0 (k),⊛) acts freely and transitively on DMR

ι
λ(k) by left multi-

plication ⊛.

1.3. The torsor DMR
ι
×(k).

1.3.1. Action of the group k× on k〈〈X〉〉. The group k× acts on k〈〈X〉〉 by k-algebra
automorphisms by

(1.15) k× −→ Autk-alg(k〈〈X〉〉); λ 7−→ λ • − : xg 7→ λxg, for g ∈ G ⊔ {0}.

One checks that, for any λ ∈ k×, the automorphism λ • − is a Hopf algebra automor-

phism of (k〈〈X〉〉, ∆̂). In addition, for any λ ∈ k× and any g ∈ G, we have

(1.16) (λ • −) ◦ tg = tg ◦ (λ • −),

this can be verified by checking this identity on generators since both sides are given
as a composition of k-algebra morphisms.

Proposition 1.3.1. For any λ ∈ k×, the map λ • − : k〈〈X〉〉 → k〈〈X〉〉 restricts to a
group automorphism of (G(k〈〈X〉〉),⊛).

In order the prove this, we will need the following Lemma:

Lemma 1.3.2. For any (λ,Ψ) ∈ k× × G(k〈〈X〉〉), we have

(1.17) (λ • −) ◦ autΨ = autλ•Ψ ◦ (λ • −).

Proof. Let (λ,Ψ) ∈ k× × G(k〈〈X〉〉). Since all the morphisms are algebra automor-
phisms of k〈〈X〉〉, it is enough to check this identity on generators. We have

(λ • −) ◦ autΨ(x0) = λ • x0 = λx0 = λautλ•Ψ(x0) = autλ•Ψ(λx0) = autλ•Ψ(λ • x0)

and for g ∈ G,

(λ • −) ◦ autΨ(xg) = (λ • −) ◦ Adtg(Ψ−1)(xg) = Adλ•tg(Ψ−1)(λ • xg)

= Adtg(λ•Ψ−1)(λ • xg) = autλ•Ψ(λ • xg),

where the third equality comes from Identity (1.16). �

Proof of Proposition 1.3.1. Let λ ∈ k×. Since λ • − is a Hopf algebra automorphism

of (k〈〈X〉〉, ∆̂), it restricts to a map G(k〈〈X〉〉) → G(k〈〈X〉〉). Let Ψ,Φ ∈ G(k〈〈X〉〉).
We have

λ • (Ψ⊛ Φ) = λ • (ΨautΨ(Φ)) = (λ •Ψ) (λ • autΨ(Φ))

= (λ •Ψ)autλ•Ψ(λ • Φ) = (λ •Ψ)⊛ (λ • Φ),

where the third equality comes from Lemma 1.3.2. This proves that λ • − is a group
endomorphism of (G(k〈〈X〉〉),⊛). Finally, one has that (λ • −)−1 = λ−1 • − and the
above computations shows that (λ • −)−1 is an endomorphism of (G(k〈〈X〉〉),⊛) thus
proving the statement. �

Proposition 1.3.1 enables us to define the following:
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Definition 1.3.3. We denote k× ⋉ G(k〈〈X〉〉) the semi-direct product of k× and
G(k〈〈X〉〉) with respect to the action given in Proposition 1.3.1. It consists of the
set k× × G(k〈〈X〉〉) endowed with a group law which will also be denoted ⊛ and we
have for (λ,Ψ), (ν,Φ) ∈ k× × G(k〈〈X〉〉),

(1.18) (λ,Ψ)⊛ (ν,Φ) := (λν,Ψ ⊛ (λ • Φ)).

1.3.2. Action of the group k× on crossed product algebras and module. The group k×

acts on V̂DR
G by k-algebra automorphisms by

(1.19) k× −→ Autk-alg(V̂
DR
G ); λ 7−→ λ •V − : ei 7→ λei; g 7→ g, for i ∈ {0, 1} and g ∈ G.

Lemma 1.3.4. Let λ ∈ k×.

(i) The following diagram

(1.20)

k〈〈X〉〉 k〈〈X〉〉

V̂DR
G V̂DR

G

λ•−

β◦(−⊗1) β◦(−⊗1)

λ•V−

commutes.
(ii) For Ψ ∈ k〈〈X〉〉, we have

(1.21) Γλ•Ψ(−e1) = λ •V ΓΨ(−e1).

Proof.

(i) Since all arrows are k-algebra morphisms, one easily checks the commutativity
of generators.

(ii) It follows from the fact that, for n ∈ N>0, we have (λ•Ψ|xn−10 x1) = λn(Ψ|xn−10 x1).

�

Lemma 1.3.5. Let λ ∈ k×.

(i) The k-algebra automorphism λ •V − of V̂DR
G restricts to a Hopf algebra automor-

phism λ •W − of (ŴDR
G , ∆̂W ,DR

G ).

(ii) The k-algebra automorphism λ •V − of V̂DR
G induces a coalgebra automorphism

λ •M − of (M̂DR
G , ∆̂M,DR

G ).

Proof.

(i) For (n, g) ∈ N>0 ×G we have

λ •V zn,g = λ •V (−en−10 ge1) = −λnen−10 ge1 = λnzn,g.

Since the algebra ŴDR
G is freely generated by (zn,g)(n,g)∈N>0×G, it follows that

λ •V (Ŵ
DR
G ) ⊂ ŴDR

G . Similarly, (λ •V −)−1(ŴDR
G ) ⊂ ŴDR

G . Hence, λ •V (Ŵ
DR
G ) =

ŴDR
G . This implies that λ •V − restricts to a k-algebra automorphism λ •W − of
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ŴDR
G and that the following diagram

(1.22)

ŴDR
G ŴDR

G

V̂DR
G V̂DR

G

λ•W−

λ•V−

commutes. Let us show that the following diagram

(1.23)

ŴDR
G ŴDR

G

(ŴDR
G )⊗̂2 (ŴDR

G )⊗̂2

λ•W−

∆̂W,DR
G

∆̂W,DR
G

(λ•W−)
⊗2

commutes. Indeed, for (n, g) ∈ N>0 ×G we have

∆̂W,DR
G ◦ (λ •W −)(zn,g) = ∆̂W ,DR

G (λnzn,g) = λn∆̂W ,DR
G (zn,g)

= λnzn,g ⊗ 1 + 1⊗ λnzn,g + λn
n−1∑

k=1
h∈G

zk,φ(h) ⊗ zn−k,gh−1)

= (λ •W −)
⊗2

(
zn,g ⊗ 1 + 1⊗ zn,g +

n−1∑

k=1
h∈G

zk,h ⊗ zn−k,gh−1

)

= (λ •W −)⊗2 ◦ ∆̂W ,DR
G (zn,g).

(ii) One checks that λ•V− preserves the submodule V̂DR
G e0 +

∑

g∈G

V̂DR
G (g − 1). It follows

that there is a unique k-module automorphism λ •M − of M̂DR
G such that the

following diagram

(1.24)

V̂DR
G V̂DR

G

M̂DR
G M̂DR

G

λ•V−

−·1DR −·1DR

λ•M−

commutes. Since λ•V− restricts to the automorphism λ•W− of ŴDR
G , we obtain

the following commutative diagram

(1.25)

ŴDR
G ŴDR

G

M̂DR
G M̂DR

G

λ•W−

−·1DR −·1DR

λ•M−
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We then have the following cube

M̂DR
G M̂DR

G

ŴDR
G ŴDR

G

(M̂DR
G )⊗̂2 (M̂DR

G )⊗̂2

(ŴDR
G )⊗̂2 (ŴDR

G )⊗̂2

∆̂M,DR
G

λ•M−

∆̂M,DR
G

λ•W−

∆̂W,DR
G

−·1DR

∆̂W,DR
G

−·1DR

(λ•M−)
⊗2

(λ•W−)
⊗2

−·1⊗2
DR

−·1⊗2
DR

The left and the right faces are exactly the same square, which is commuta-
tive since it corresponds to Diagram 1.10. The upper side commutes thanks to
Diagram (1.25) and the lower side is the tensor square of the upper side so is
commutative. Finally, (i) gives us the commutativity of the front side. This col-
lection of commutativities together with the surjectivity of − · 1DR implies that
the back side of the cube commutes, which proves that λ •M − is a coalgebra

automorphism of (M̂DR
G , ∆̂M,DR

G ).

�

Proposition 1.3.6. Let λ ∈ k×.

(i) The pair (λ •V −, λ •M −) is an automorphism of (V̂DR
G ,M̂DR

G ) in the category
k-alg-modtop.

(ii) The pair (λ•W−, λ•M−) is an automorphism of ((ŴDR
G , ∆̂W ,DR

G ), (M̂DR
G , ∆̂M,DR

G ))
in the category k-HAMCtop.

Proof.

(i) Let (v,m) ∈ V̂DR
G × M̂DR

G . Since − · 1DR : V̂DR
G → M̂DR

G is surjective, there exist

v′ ∈ V̂DR
G such that m = v′ · 1DR. We have

λ •M (vm) = λ •M (vv′ · 1DR) = (λ •V vv
′) · 1DR = (λ •V v) (λ •V v

′) · 1DR

= (λ •V v) (λ •M m),

where the second and fourth equalities come from the commutativity of Diagram
(1.24).

(ii) It follows from (i) and from Lemma 1.3.5.

�

1.3.3. The torsor DMR
ι
×(k).

Proposition 1.3.7. For any λ ∈ k×, the map λ • − : k〈〈X〉〉 → k〈〈X〉〉 restricts to a
group automorphism of (DMR

G
0 (k),⊛).
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Proof. It follows from Proposition 1.3.1 that (λ •−)| G(k〈〈X〉〉) is a group automorphism
of (G(k〈〈X〉〉),⊛). It remains to prove that this permutation of G(k〈〈X〉〉) induces a

permutation of its subset DMR
G
0 (k). Let λ ∈ k× and Ψ ∈ DMR

G
0 (k). Since λ•x0 = λx0

and λ • xg = λxg for g ∈ G, Conditions (i), (iii), (iv) and (v) of Definition 1.2.1 are
immediately satisfied by λ •Ψ. In order to prove that Condition (ii) is satisfied, let us
use Proposition 1.2.4. We have

(λ •Ψ)⋆ =
(
Γ−1λ•Ψ(−e1)β(λ •Ψ⊗ 1)

)
· 1DR =

(
(λ •V Γ

−1
Ψ (−e1)) (λ •V β(Ψ⊗ 1))

)
· 1DR

=
(
λ •V (Γ

−1
Ψ (−e1)β(Ψ ⊗ 1))

)
· 1DR = λ •M

(
Γ−1Ψ (−e1)β(Ψ⊗ 1) · 1DR

)

= λ •M Ψ⋆,(1.26)

where the second equality comes from the commutativity of Diagram (1.20) and Identity
(1.21), the third one from the fact that λ •V − is an algebra morphism and the fourth
one from Lemma 1.3.5. (ii). Therefore, we obtain that

∆̂M,DR
G ((λ •Ψ)⋆) = ∆̂M,DR

G (λ •M Ψ⋆) = (λ •M −)⊗2 ◦ ∆̂M,DR
G (Ψ⋆)

= (λ •M −)⊗2((Ψ⋆)⊗2) = (λ •M Ψ⋆)⊗2

= (λ •Ψ)⋆ ⊗ (λ •Ψ)⋆,

where the first and last equalities come from (1.26), the second one from Lemma 1.3.5.
(ii) and the third one from Proposition 1.2.4 and the fact that Ψ ∈ DMR

G
0 (k). This

proves that λ • − restricts to a self-map of DMR
G
0 (k). Following the same steps, one

shows that (λ • −)−1 = λ−1 • − restricts to a self-map of DMR
G
0 (k) thus proving the

statement. �

Proposition 1.3.7 enables us to state the following definition:

Definition 1.3.8. We denote k× ⋉ DMR
G
0 (k) the semi-direct product of k× and

DMR
G
0 (k) with respect to the action given in Proposition 1.3.7. It is a subgroup of

k× ⋉ G(k〈〈X〉〉).

Definition 1.3.9. Let ι : G → C× be a group embedding. We define

(1.27) DMR
ι
×(k) := {(λ,Ψ) ∈ k× × G(k〈〈X〉〉) |Ψ ∈ DMR

ι
λ(k)}.

Proposition 1.3.10. Let ι : G → C× be a group embedding. The group k×⋉DMR
G
0 (k)

acts freely and transitively on DMR
ι
×(k) by left multiplication ⊛.

In order to prove this, we will need the following Lemma:

Lemma 1.3.11. Let ι : G → C× be a group embedding and λ, ν ∈ k×. If Φ ∈ DMR
ι
ν(k)

then λν−1 • Φ ∈ DMR
ι
λ(k).

Proof. Let Φ ∈ DMR
ι
ν(k). Since λν

−1 •x0 = λν−1x0 and λν−1•xg = λν−1xg for g ∈ G,
we have

• (λν−1 • Φ|x0) = λν−1(Φ|x0) = 0 and (λν−1 • Φ|x1) = λν−1(Φ|x1) = 0.

• (λν−1 • Φ|x0x1) = λ2ν−1
2
(Φ|x0x1) = −λ2ν−1

2 ν2

24 = −λ2

24 .

• (λν−1 • Φ|xgι − x
g−1
ι
) = λν−1(Φ|xgι − x

g−1
ι
) = λν−1 |G|−22 ν = |G|−2

2 λ.
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This proves respectively conditions (i), (iii) and (iv) of Definition 1.2.1. Condition (v)
follows from condition (iv). Finally, one shows that Condition (ii) is satisfied by using
the same arguments as in the proof of Proposition 1.3.7. �

Proof of Proposition 1.3.10. Since the action of the group k× ⋉ G(k〈〈X〉〉) on the set
k× × G(k〈〈X〉〉) by left multiplication ⊛ is free, so is its restriction to the action of

k×⋉DMR
G
0 (k) on DMR

ι
×(k). Let us show that this action is transitive. Let (λ,Ψ) and

(ν,Φ) ∈ DMR
ι
×(k). Set µ = λν−1. It follows from Lemma 1.3.11 that µ•Φ ∈ DMR

ι
λ(k).

Thanks to Proposition 1.2.5.(ii), the action of the group (DMR
G
0 (k),⊛) on DMR

ι
λ(k)

is transitive, therefore, there exists Λ ∈ DMR
G
0 (k) such that Λ ⊛ (µ • Φ) = Ψ. Thus

(µ,Λ) ∈ k× ⋉ DMR
G
0 (k) is such that

(µ,Λ)⊛ (ν,Φ) = (λ,Ψ),

which proves the transitivity. �

1.4. The torsor DMR×(k).

1.4.1. Action of the group Aut(G) on k〈〈X〉〉. The group Aut(G) acts on k〈〈X〉〉 by
k-algebra automorphisms, the element φ ∈ Aut(G) acting by the automorphism ηφ
given by

(1.28) x0 7→ x0, xg 7→ xφ(g) for g ∈ G.

One checks that, for any φ ∈ Aut(G), the automorphism ηφ is a Hopf algebra automor-

phism of (k〈〈X〉〉, ∆̂).
In addition, for any φ ∈ Aut(G) and any g ∈ G, we have

(1.29) ηφ ◦ tg = tg ◦ ηφ,

which can be verified by checking this identity on generators since both sides are given
as a composition of k-algebra morphisms. Let us show that

Proposition 1.4.1. Let φ ∈ Aut(G). The map ηφ restricts to a group automorphism
of (G(k〈〈X〉〉),⊛).

In order to prove this, we will need the following Lemma:

Lemma 1.4.2. Let φ ∈ Aut(G), g ∈ G and Ψ ∈ G(k〈〈X〉〉). We have

(1.30) ηφ ◦ autΨ = autηφ(Ψ) ◦ ηφ.

Proof. Since all morphisms are algebra automorphisms of k〈〈X〉〉, it is enough to check
this identity on generators. We have

ηφ ◦ autΨ(x0) = ηφ(x0) = x0 = autηφ(Ψ)(x0) = autηφ(Ψ) ◦ ηφ(x0)

and for g ∈ G,

ηφ ◦ autΨ(xg) = ηφ(Adtg(Ψ−1)(xg)) = Adtφ(g)(ηφ(Ψ)−1)(ηφ(xg))

= Adtφ(g)(ηφ(Ψ)−1)(xφ(g)) = autηφ(Ψ)(xφ(g)) = autηφ(Ψ) ◦ ηφ(xg),

where the second equality comes from identity (1.29). �



16 YADDADEN KHALEF

Proof of Proposition 1.4.1. Let φ ∈ Aut(G). Since ηφ is a Hopf algebra automorphism

of (k〈〈X〉〉, ∆̂), it restricts to a map G(k〈〈X〉〉) → G(k〈〈X〉〉). Let Ψ,Φ ∈ G(k〈〈X〉〉).
We have

ηφ(Ψ⊛ Φ) = ηφ(ΨautΨ(Φ)) = ηφ(Ψ)ηφ(autΨ(Φ))

= ηφ(Ψ)autηφ(Ψ)(ηφ(Φ)) = ηφ(Ψ)⊛ ηφ(Φ),

where the third equality comes from Lemma 1.4.2. This proves that ηφ restricts to a

group endomorphism of (G(k〈〈X〉〉),⊛). Finally, one has that η−1φ = ηφ−1 and the above

computations shows that η−1φ is an endomorphism of (G(k〈〈X〉〉),⊛), thus proving the
statement. �

Lemma 1.4.3. For (φ, λ) ∈ Aut(G) × k×, we have

ηφ ◦ (λ • −) = (λ • −) ◦ ηφ.

Proof. Let (φ, λ) ∈ Aut(G) × k×. Since all the morphisms are algebra automorphisms
of k〈〈X〉〉, it is enough to check this identity on generators. We have

ηφ ◦ (λ • x0) = ηφ(λx0) = λx0 = λ • x0 = λ • ηφ(x0) = (λ • −) ◦ ηφ(x0)

and for g ∈ G,

ηφ ◦ (λ • xg) = ηφ(λxg) = λxφ(g) = λ • xφ(g) = λ • ηφ(xg) = (λ • −) ◦ ηφ(xg).

�

Propositions 1.3.1 and 1.4.1 and Lemma 1.4.3 enable us to define the following:

Definition 1.4.4. We denote (Aut(G) × k×) ⋉ G(k〈〈X〉〉) the semi-direct product of
Aut(G)×k× and G(k〈〈X〉〉) with respect to the action given in Propositions 1.3.1 and
1.4.1. It consists of the set Aut(G)×k××G(k〈〈X〉〉) endowed with a group law which
will also be denoted ⊛ and we have for (φ, λ,Ψ), (φ′, ν,Φ) ∈ Aut(G)×k××G(k〈〈X〉〉),

(1.31) (φ, λ,Ψ) ⊛ (φ′, ν,Φ) := (φ ◦ φ′, λν,Ψ ⊛ ηφ(λ • Φ)).

1.4.2. Action of the group Aut(G) on Emb(G). Let us denote

(1.32) Emb(G) := {ι : G → C× | ι is a group embedding}.

Lemma 1.4.5. The group Aut(G) acts freely and transitively on Emb(G) by

(1.33) (φ, ι) 7−→ ι ◦ φ−1,

for (φ, ι) ∈ Aut(G)× Emb(G).

Proof. One knows that for any ι ∈ Emb(G), ι(G) = µN . That gives rise to a group
isomorphism ι̃ : G → µN (C). Therefore, for any ι, ι′ ∈ Emb(G) there is a unique group

automorphism φ = ι̃′
−1

◦ ι̃ of G such that ι ◦ φ−1 = ι′. �

Corollary 1.4.6. The group (Aut(G) × k×) ⋉ G(k〈〈X〉〉) acts freely and transitively
on Emb(G)× k× × G(k〈〈X〉〉) by

(1.34) (φ, λ,Ψ) · (ι, ν,Φ) = (ι ◦ φ−1, λν,Ψ⊛ ηφ(λ • Φ)),

for (φ, λ,Ψ) ∈ (Aut(G)× k×)⋉ G(k〈〈X〉〉) and (ι, ν,Φ) ∈ Emb(G)× k× × G(k〈〈X〉〉).
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Proof. Let (ι, ν,Φ), (ι′, ν ′,Φ′) ∈ Emb(G) × k× × G(k〈〈X〉〉). Thanks to Lemma 1.4.5,
there is a unique φ ∈ Aut(G) such that ι′ = ι ◦ φ−1. Set

λ = ν−1ν ′ and Ψ = Φ′ ⊛ ηφ(λ • Φ)⊛(−1).

In conclusion, there is a unique (φ, λ,Ψ) ∈ (Aut(G) × k×)⋉ G(k〈〈X〉〉) such that

(φ, λ,Ψ) · (ι, ν,Φ) = (ι′, ν ′,Φ′),

which proves the statement. �

1.4.3. Action of the group Aut(G) on crossed product algebras and module. The group

Aut(G) acts on V̂DR
G by k-algebra automorphisms the element φ ∈ Aut(G) acting by

the automorphism ηVφ given by

(1.35) e0 7→ e0, e1 7→ e1 and g 7→ φ(g) for g ∈ G.

Lemma 1.4.7. Let φ ∈ Aut(G). The following diagram

(1.36)

k〈〈X〉〉 k〈〈X〉〉

V̂DR
G V̂DR

G

ηφ

β◦(−⊗1) β◦(−⊗1)

ηV
φ

commutes.

Proof. Since all arrows are k-algebra morphisms, one easily checks the commutativity
of generators. �

Lemma 1.4.8. Let φ ∈ Aut(G).

(i) The k-algebra automorphism ηVφ of V̂DR
G restricts to a Hopf algebra automorphism

ηWφ of (ŴDR
G , ∆̂W ,DR

G ).

(ii) The k-algebra automorphism ηVφ of V̂DR
G induces a coalgebra automorphism ηMφ

of (M̂DR
G , ∆̂M,DR

G ).

Proof.

(i) For (n, g) ∈ N>0 ×G we have

ηVφ (zn,g) = ηVφ (−en−10 ge1) = −en−10 φ(g)e1 = zn,φ(g).

Since the algebra ŴDR
G is freely generated by the family (zn,g)(n,g)∈N>0×G, it follows

that ηVφ (Ŵ
DR
G ) ⊂ ŴDR

G . Similarly, (ηVφ )
−1(ŴDR

G ) ⊂ ŴDR
G . Hence, ηVφ (Ŵ

DR
G ) =

ŴDR
G . This implies that ηVφ restricts to a k-algebra automorphism of ŴDR

G which

we denote ηWφ and that we have the following commutative diagram

(1.37)

ŴDR
G ŴDR

G

V̂DR
G V̂DR

G

ηW
φ

ηV
φ



18 YADDADEN KHALEF

Let us show that the following diagram

(1.38)

ŴDR
G ŴDR

G

(ŴDR
G )⊗2 (ŴDR

G )⊗2

ηW
φ

∆̂W,DR
G

∆̂W,DR
G

(ηW
φ

)⊗2

commutes. Indeed, for (n, g) ∈ N>0 ×G we have

∆̂W ,DR
G ◦ ηWφ (zn,g) = ∆̂W ,DR

G (zn,φ(g))

= zn,φ(g) ⊗ 1 + 1⊗ zn,φ(g) +
n−1∑

k=1
h∈G

zk,h ⊗ zn−k,φ(g)h−1

= zn,φ(g) ⊗ 1 + 1⊗ zn,φ(g) +

n−1∑

k=1
h∈G

zk,φ(h) ⊗ zn−k,φ(g)φ(h−1)

= (ηWφ )⊗2
(
zn,g ⊗ 1 + 1⊗ zn,g +

n−1∑

k=1
h∈G

zk,h ⊗ zn−k,gh−1

)

= (ηWφ )⊗2 ◦ ∆̂W ,DR
G (zn,g).

(ii) Let φ ∈ Aut(G). One checks that ηVφ preserves the submodule V̂DR
G e0 +

∑

g∈G

V̂DR
G (g − 1).

It follows that there is a unique k-module automorphism ηMφ of M̂DR
G such that the

following diagram

(1.39)

V̂DR
G V̂DR

G

M̂DR
G M̂DR

G

ηV
φ

−·1DR −·1DR

ηM
φ

commutes. Combined with (i), it gives the following commutative diagram

(1.40)

ŴDR
G ŴDR

G

M̂DR
G M̂DR

G

ηW
φ

−·1DR −·1DR

ηM
φ
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We then have the following cube

M̂DR
G M̂DR

G

ŴDR
G ŴDR

G

(M̂DR
G )⊗̂2 (M̂DR

G )⊗̂2

(ŴDR
G )⊗̂2 (ŴDR

G )⊗̂2

∆̂M,DR
G

ηM
φ

∆̂M,DR
G

ηW
φ

∆̂W,DR
G

−·1DR

∆̂W,DR
G

−·1DR

(ηM
φ

)⊗2

(ηW
φ

)⊗2

−·1⊗2
DR

−·1⊗2
DR

The left and the right faces are exactly the same square, which is commutative since
it corresponds to Diagram 1.10. The upper side commutes thanks to Diagram (1.40)
and the lower side is the tensor square of the upper side so is commutative. Finally,
(i) gives us the commutativity of the front side. This collection of commutativities
together with the surjectivity of − · 1DR implies that the back side of the cube

commutes, which proves that ηMφ is a coalgebra automorphism of (M̂DR
G , ∆̂M,DR

G ).

�

Proposition 1.4.9. Let φ ∈ Aut(G).

(i) The pair (ηVφ , η
M
φ ) is an automorphism of (V̂DR

G ,M̂DR
G ) in the category k-alg-modtop.

(ii) The pair (ηWφ , ηMφ ) is an automorphism of ((ŴDR
G , ∆̂W ,DR

G ), (M̂DR
G , ∆̂M,DR

G )) in the
category k-HAMCtop.

Proof.

(i) Let (v,m) ∈ V̂DR
G × M̂DR

G . Since − · 1DR : V̂DR
G → M̂DR

G is surjective, there exist

v′ ∈ V̂DR
G such that m = v′ · 1DR. We have

ηMφ (vm) = ηMφ (vv′ · 1DR) = ηVφ (vv
′) · 1DR

= ηVφ (v) η
V
φ (v
′) · 1DR = ηVφ (v) η

M
φ (m),

where the second and fourth equalities come from Lemma 1.4.8. (ii).
(ii) It follows from (i) and from Lemma 1.4.8.

�

1.4.4. The torsor DMR×(k). Lemma 1.4.5 sets up the following result:

Proposition 1.4.10. Let λ ∈ k. For ι, ι′ ∈ Emb(G), the element φ ∈ Aut(G) such

that ι′ = ι ◦ φ is such that ηφ is a bijection between DMR
ι
λ(k) and DMR

ι′

λ (k).

Proof. Since ηφ is a Hopf algebra automorphism of (k〈〈X〉〉, ∆̂), it restricts to group

automorphism of G(k〈〈X〉〉). It remains to show that ηφ : DMR
ι
λ(k) → DMR

ι◦φ−1

λ (k)
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is a bijection. Let Ψ ∈ DMR
ι
λ(k). Since φ(x0) = x0 and φ(x1) = x1, Conditions

(i) and (iii) of Definition 1.2.1 are immediately satisfied by ηφ(Ψ). Moreover, since
gι◦φ−1 = φ(gι), we have

(
ηφ(Ψ)|xg

ι◦φ−1 − x
g−1

ι◦φ−1

)
=

(
ηφ(Ψ)|xφ(gι) − x

φ(g−1
ι )

)
=

(
ηφ(Ψ)|ηφ(xgι − x

g−1
ι
)
)

=
(
Ψ|xgι − xg−1

ι

)
=

|G| − 2

2
λ.

Then Identity (iv) of Definition 1.2.1 follows. One checks Identity (v) in a similar way.
Let us prove that Condition (ii) is satisfied by ηφ(Ψ). We have

(ηφ(Ψ))⋆ =
(
Γ−1
ηφ(Ψ)(−e1)β(ηφ(Ψ)⊗ 1)

)
· 1DR =

(
Γ−1Ψ (−e1)β(ηφ(Ψ)⊗ 1)

)
· 1DR

=
(
Γ−1Ψ (−e1)η

V
φ (β(Ψ ⊗ 1))

)
· 1DR =

(
ηVφ

(
Γ−1Ψ (−e1)β(Ψ ⊗ 1)

))
· 1DR

= ηMφ
(
Γ−1Ψ (−e1)β(Ψ ⊗ 1) · 1DR

)
= ηMφ (Ψ⋆),

where the second equality comes from the fact that ηφ(x1) = x1, the third one from the

commutativity of Diagram (1.36), the fourth one from the fact that ηVφ (e1) = e1 and

the fifth one from the commutativity of Diagram (1.39). Therefore, thanks to Lemma
1.4.8.(ii) and the fact that Ψ ∈ DMR

ι
λ(k), we obtain that

∆̂M,DR
G ((ηφ(Ψ))⋆) = ∆̂M,DR

G

(
ηMφ (Ψ⋆)

)
= (ηMφ )⊗2

(
∆̂M,DR

G (Ψ⋆)
)

= (ηMφ )⊗2(Ψ⋆ ⊗Ψ⋆) = ηMφ (Ψ⋆)⊗2 = (ηφ(Ψ))⋆ ⊗ (ηφ(Ψ))⋆,

which implies, by Proposition 1.2.4, that condition (ii) of Definition 1.2.1 is verified by

(ηφ(Ψ))⋆. This proves that ηφ restricts to a map DMR
ι
λ(k) → DMR

ι◦φ−1

λ (k). Finally,

following the same steps, one shows that η−1φ = ηφ−1 restricts to a map DMR
ι◦φ−1

λ (k) →

DMR
ι
λ(k) thus proving the statement. �

Corollary 1.4.11. For any φ ∈ Aut(G), the map ηφ restricts to a group automorphism

of (DMR
G
0 (k),⊛).

Proof. From Proposition 1.4.10 it follows that for λ = 0 and any φ ∈ Aut(G) the map
ηφ restricts to a bijection from DMR

G
0 (k) to itself. In addition, since (DMR

G
0 (k),⊛)

is a subgroup of (G(k〈〈X〉〉),⊛), Proposition 1.4.1 states that this map is a group
morphism. �

Proposition 1.3.7, Corollary 1.4.11 and Lemma 1.4.3 enable us to state the following
definition:

Definition 1.4.12. We denote (Aut(G)× k×)⋉DMR
G
0 (k) the semi-direct product of

Aut(G)×k× and DMR
G
0 (k) with respect to the group action of Aut(G)×k× induced by

Corollary 1.4.11 and Proposition 1.3.7. It is a subgroup of (Aut(G)×k×)⋉G(k〈〈X〉〉).

Definition 1.4.13. We define

(1.41) DMR×(k) := {(ι, λ,Ψ) ∈ Emb(G)× k× × G(k〈〈X〉〉) | (λ,Ψ) ∈ DMR
ι
×(k)}.
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Proposition 1.4.14. The group (Aut(G)×k×)⋉DMR
G
0 (k) acts freely and transitively

on DMR×(k) by

(1.42) (φ, λ,Ψ) · (ι, ν,Φ) = (ι ◦ φ−1, λν,Ψ ⊛ ηφ(λ • Φ)),

for (φ, λ,Ψ) ∈ Aut(G)× k× × DMR
G
0 (k) and (ι, ν,Φ) ∈ DMR×(k).

Proof. Let (ι, ν,Φ), (ι′, ν ′,Φ′) ∈ DMR×(k). Thanks to Lemma 1.4.5, there is a unique
φ ∈ Aut(G) such that ι′ = ι ◦ φ−1. Set λ = ν−1ν ′. Since Φ ∈ DMR

ι
ν(k), thanks to

Lemma 1.3.11 and Proposition 1.4.10, it follows that ηφ(λ • Φ) ∈ DMR
ι′

ν′(k). Thanks

to Proposition 1.2.5.(ii), the set DMR
ι′

ν′(k) is a torsor for the action of the group

(DMR
G
0 (k),⊛). Therefore, there is a unique Ψ ∈ DMR

G
0 (k) such that Ψ⊛ηφ(λ•Φ) = Φ′.

In conclusion, there is a unique (φ, λ,Ψ) ∈ (Aut(G) × k×)⋉ DMR
G
0 (k) such that

(φ, λ,Ψ) · (ι, ν,Φ) = (ι′, ν ′,Φ′),

which proves the statement. �

Corollary 1.4.15. The pair
(
(Aut(G) × k×) ⋉ DMR

G
0 (k),DMR×(k)

)
is a subtorsor

of
(
(Aut(G)× k×)⋉ G(k〈〈X〉〉),Emb(G)× k× × G(k〈〈X〉〉)

)
.

Proof. It follows from Propositions 1.4.6 and 1.4.14. �

2. The double shuffle group as a stabilizer of a “de Rham” coproduct

In this section, we recall the action of the group (G(k〈〈X〉〉),⊛) on the algebra-

module
(
ŴDR

G ,M̂DR
G

)
given in [Yad]. This action enables us in §2.1, to construct an ac-

tion of the group (Aut(G)×k×)⋉G(k〈〈X〉〉) on the algebra-module
(
ŴDR

G ,M̂DR
G

)
. This

leads us in §2.2 to define the stabilizer groups of the coproducts ∆̂W ,DR
G and ∆̂M,DR

G .
These stabilizers are related to stabilizers arising from the action of (G(k〈〈X〉〉),⊛),
which contain DMR

G
0 (k) thanks to [EF0]. Thanks to the main result of [Yad], we

conclude in Corollary 2.2.5 a chain of inclusions involving the former stabilizers and
(Aut(G)× k×)⋉ DMR

G
0 (k).

2.1. Group actions on the algebra-module
(
ŴDR

G ,M̂DR
G

)
.

2.1.1. Actions of the group (G(k〈〈X〉〉),⊛). For Ψ ∈ G(k〈〈X〉〉), there is a unique topo-

logical k-algebra automorphism Γaut
V ,(1)
Ψ of V̂DR

G such that ([Yad, Definition 2.3.1]

e0 7→ Γ−1Ψ (−e1)β(Ψ ⊗ 1) e0 β(Ψ
−1 ⊗ 1)ΓΨ(−e1)

e1 7→ Γ−1Ψ (−e1) e1 ΓΨ(−e1)(2.1)

g 7→ Γ−1Ψ (−e1)β(Ψ ⊗ 1) g β(Ψ−1 ⊗ 1)ΓΨ(−e1).
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This automorphism restricts to a topological k-algebra automorphism Γaut
W ,(1)
Ψ of ŴDR

G

([Yad, Proposition-Definition 2.3.2]). It is such that the following diagram

(2.2)

ŴDR
G ŴDR

G

V̂DR
G V̂DR

G

Γaut
W,(1)
Ψ

Γaut
V,(1)
Ψ

commutes. Next, one defines the topological k-module automorphism Γaut
V ,(10)
Ψ of V̂DR

G

by

(2.3) Γaut
V ,(10)
Ψ := Γaut

V ,(1)
Ψ ◦ rΓ−1

Ψ (−e1)β(Ψ⊗1)
.

This automorphism induces a topological k-module automorphism Γaut
M,(10)
Ψ of M̂DR

G

such that the following diagram ([Yad, Definition 2.3.4])

(2.4)

V̂DR
G V̂DR

G

M̂DR
G M̂DR

G

Γaut
V,(10)
Ψ

−·1DR −·1DR

Γaut
M,(10)
Ψ

commutes.

Lemma 2.1.1 ([Yad, Lemma 2.3.5]). For any Ψ ∈ G(k〈〈X〉〉), the following pairs are
automorphisms in the category k-alg-modtop:

(i)
(
Γaut

V ,(1)
Ψ , Γaut

V ,(10)
Ψ

)
is an automorphism of (V̂DR

G , V̂DR
G ).

(ii)
(
Γaut

V ,(1)
Ψ , Γaut

M,(10)
Ψ

)
is an automorphism of (V̂DR

G ,M̂DR
G ).

(iii)
(
Γaut

W ,(1)
Ψ , Γaut

M,(10)
Ψ

)
is an automorphism of (ŴDR

G ,M̂DR
G ).

The group (G(k〈〈X〉〉),⊛) acts on V̂DR
G by ([Yad, Proposition 2.3.3])

(2.5) (G(k〈〈X〉〉),⊛) −→ Auttopk-alg(V̂
DR
G ); Ψ 7−→ Γaut

V ,(1)
Ψ .

Thanks to this and the commutativity of Diagram (2.2), the group (G(k〈〈X〉〉),⊛) acts

on ŴDR
G by ([Yad, Proposition 2.3.3])

(2.6) (G(k〈〈X〉〉),⊛) −→ Auttop
k-alg(Ŵ

DR
G ); Ψ 7−→ Γaut

W ,(1)
Ψ .

On the other hand, the action (2.5) induces an action of (G(k〈〈X〉〉),⊛) on V̂DR
G by

(2.7) (G(k〈〈X〉〉),⊛) −→ Auttopk-mod(V̂
DR
G ); Ψ 7−→ Γaut

V ,(10)
Ψ .

Thanks to the commutativity of Diagram (2.4), the action action (2.7) induces an action

of the group (G(k〈〈X〉〉),⊛) on M̂DR
G by ([Yad, Proposition 2.3.6])

(2.8) (G(k〈〈X〉〉),⊛) −→ Auttop
k-mod(M̂

DR
G ); Ψ 7−→ Γaut

M,(10)
Ψ .

Proposition 2.1.2.
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(i) The group (G(k〈〈X〉〉),⊛) acts on (V̂DR
G , V̂DR

G ) by

(G(k〈〈X〉〉),⊛) −→ Auttopk-alg-mod(V̂
DR
G , V̂DR

G ); Ψ 7−→ (Γaut
V ,(1)
Ψ , Γaut

V ,(10)
Ψ ).

(ii) The group (G(k〈〈X〉〉),⊛) acts on (V̂DR
G ,M̂DR

G ) by

(G(k〈〈X〉〉),⊛) −→ Auttopk-alg-mod(V̂
DR
G ,M̂DR

G ); Ψ 7−→ (Γaut
V ,(1)
Ψ , Γaut

M,(10)
Ψ ).

(iii) The group (G(k〈〈X〉〉),⊛) acts on (ŴDR
G ,M̂DR

G ) by

(G(k〈〈X〉〉),⊛) −→ Auttopk-alg-mod(Ŵ
DR
G ,M̂DR

G ); Ψ 7−→ (Γaut
W ,(1)
Ψ , Γaut

M,(10)
Ψ ).

Proof. This follows from Lemma 2.1.1 and the fact that (2.5) – (2.8) define actions. �

2.1.2. Actions of the group k× ⋉ G(k〈〈X〉〉).

Definition 2.1.3. For (λ,Ψ) ∈ k× × G(k〈〈X〉〉), we define the topological k-algebra-

module automorphism
(

Γaut
V ,(1)
(λ,Ψ),

Γaut
V ,(10)
(λ,Ψ)

)
of

(
V̂DR
G , V̂DR

G

)
given by

(
Γaut

V ,(1)
(λ,Ψ)

, Γaut
V ,(10)
(λ,Ψ)

)
:=

(
Γaut

V ,(1)
Ψ , Γaut

V ,(10)
Ψ

)
◦
(
(λ •V −), (λ •V −)

)
,

with (λ •V −) ∈ Autk-algtop(V̂
DR
G ) given in (1.19).

Proposition-Definition 2.1.4. For (λ,Ψ) ∈ k××G(k〈〈X〉〉), we define the topological

k-algebra-module automorphism
(

Γaut
W ,(1)
(λ,Ψ) ,

Γaut
M,(10)
(λ,Ψ)

)
of

(
ŴDR

G ,M̂DR
G

)
given by

(
Γaut

W ,(1)
(λ,Ψ) ,

Γaut
M,(10)
(λ,Ψ)

)
:=

(
Γaut

W ,(1)
Ψ , Γaut

M,(10)
Ψ

)
◦
(
(λ •W −), (λ •M −)

)
.

It is such that the following diagrams

(2.9)

ŴDR
G ŴDR

G

V̂DR
G V̂DR

G

Γaut
W,(1)
(λ,Ψ)

Γaut
V,(1)
(λ,Ψ)

and

(2.10)

V̂DR
G V̂DR

G

M̂DR
G M̂DR

G

Γaut
V,(10)
(λ,Ψ)

−·1DR −·1DR

Γaut
M,(10)
(λ,Ψ)

commute.

Proof. From Propositions 1.3.6.(ii) and 2.1.2.(iii) we have that the pairs (λ•W−, λ•W−)

and
(

Γaut
W ,(1)
Ψ , Γaut

M,(10)
Ψ

)
are morphisms in k-alg-modtop; the composition is then a

morphism in k-alg-modtop. Next, the commutativity of the diagrams follows from the
commutativity of Diagrams (1.22) and (2.2) and Diagrams (1.24) and (2.4). �
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Lemma 2.1.5. For (λ,Ψ) ∈ k× × G(k〈〈X〉〉), we have

(2.11) Γaut
V ,(1)
λ•Ψ ◦ (λ •V −) = (λ •V −) ◦ Γaut

V ,(1)
Ψ .

Proof. Since both sides are given as a composition of k-algebra morphisms of V̂DR
G , it

is enough to verify this identity on generators. We have

Γaut
V ,(1)
λ•Ψ (λ •V e0) =

Γaut
V ,(1)
λ•Ψ (λe0) = λ Γaut

V ,(1)
λ•Ψ (e0)

= λΓ−1λ•Ψ(−e1)β(λ •Ψ⊗ 1) e0 β(λ •Ψ−1 ⊗ 1)Γλ•Ψ(−e1)

=
(
λ •V Γ−1Ψ (−e1)

)
(λ •V β(Ψ ⊗ 1)) λ e0

(
λ •V β(Ψ−1 ⊗ 1)

)
(λ • ΓΨ(−e1))

= λ •V
(
Γ−1Ψ (−e1)β(Ψ ⊗ 1) e0 β(Ψ

−1 ⊗ 1)ΓΨ(−e1)
)

= λ •V
Γaut

V ,(1)
Ψ (e0),

where the fourth equality comes from the commutativity of Diagram (1.20) and Identity
(1.21) and the fifth one from the fact that λ •V − is an algebra morphism. Next,

Γaut
V ,(1)
λ•Ψ (λ •V e1) =

Γaut
V ,(1)
λ•Ψ (λe1) = λ Γaut

V ,(1)
λ•Ψ (e1) = λΓ−1λ•Ψ(−e1) e1 Γλ•Ψ(−e1)

=
(
λ •V Γ

−1
Ψ (−e1)

)
λ e1 (λ • ΓΨ(−e1))

= λ •V
(
Γ−1Ψ (−e1) e1 ΓΨ(−e1)

)

= λ •V
Γaut

V ,(1)
Ψ (e1),

where the fourth equality comes from Identity (1.21) and the fifth one from the fact
that λ •V − is an algebra morphism. Finally, for g ∈ G,

Γaut
V ,(1)
λ•Ψ (λ •V g) =

Γaut
V ,(1)
λ•Ψ (g) = Γaut

V ,(1)
λ•Ψ (g)

= Γ−1λ•Ψ(−e1)β(λ •Ψ⊗ 1) g β(λ •Ψ−1 ⊗ 1)Γλ•Ψ(−e1)

=
(
λ •V Γ

−1
Ψ (−e1)

)
(λ •V β(Ψ ⊗ 1)) g

(
λ •V β(Ψ−1 ⊗ 1)

)
(λ • ΓΨ(−e1))

= λ •V
(
Γ−1Ψ (−e1)β(Ψ ⊗ 1) g β(Ψ−1 ⊗ 1)ΓΨ(−e1)

)

= λ •V
Γaut

V ,(1)
Ψ (g),

where the fourth equality comes from the commutativity of Diagram (1.20) and Identity
(1.21) and the fifth one from the fact that λ •V − is an algebra morphism. �

Corollary 2.1.6. For (λ,Ψ) ∈ k× × G(k〈〈X〉〉), we have

(i) Γaut
W ,(1)
λ•Ψ ◦ (λ •W −) = (λ •W −) ◦ Γaut

W ,(1)
Ψ .

(ii) Γaut
M,(10)
λ•Ψ ◦ (λ •M −) = (λ •M −) ◦ Γaut

M,(10)
Ψ .

Proof.

(i) This follows from Lemma 2.1.5 thanks to Lemma 1.3.5.(i) and to the commuta-
tivity of Diagram (2.2).

(ii) This follows from Lemma 2.1.5 thanks to Lemma 1.3.5.(ii) and to the commuta-
tivity of Diagram (2.4).

�
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Corollary 2.1.7. The group k× ⋉ G(k〈〈X〉〉) acts on (ŴDR
G ,M̂DR

G ) by

k× ⋉ G(k〈〈X〉〉) −→ Auttopk-alg-mod

(
ŴDR

G ,M̂DR
G

)
; (λ,Ψ) 7−→

(
Γaut

W ,(1)
(λ,Ψ) ,

Γaut
M,(10)
(λ,Ψ)

)
.

Proof. Let (λ,Ψ), (ν,Φ) ∈ k× × G(k〈〈X〉〉). We have

Γaut
W ,(1)
(λ,Ψ)⊛(ν,Φ) =

Γaut
W ,(1)
(λν,Ψ⊛λ•Φ) =

Γaut
W ,(1)
Ψ⊛λ•Φ ◦ (λν •V −)

= Γaut
W ,(1)
Ψ ◦ Γaut

W ,(1)
λ•Φ ◦ (λ •W −) ◦ (ν •W −)

= Γaut
W ,(1)
Ψ ◦ (λ •W −) ◦ Γaut

W ,(1)
Φ ◦ (ν •W −)

= Γaut
W ,(1)
(λ,Ψ) ◦ Γaut

W ,(1)
(ν,Φ) ,

where the third equality comes from the fact that Ψ 7→ Γaut
V ,(1)
Ψ and λ 7→ (λ •V −) are

group actions and the fourth one from Corollary 2.1.6.(i). Next, we have

Γaut
M,(10)
(λ,Ψ)⊛(ν,Φ) =

Γaut
M,(10)
(λν,Ψ⊛λ•Φ) =

Γaut
M,(10)
Ψ⊛λ•Φ ◦ (λν •M −)

= Γaut
M,(10)
Ψ ◦ Γaut

M,(10)
λ•Φ ◦ (λ •M −) ◦ (ν •M −)

= Γaut
M,(1)
Ψ ◦ (λ •M −) ◦ Γaut

M,(10)
Φ ◦ (ν •M −)

= Γaut
M,(10)
(λ,Ψ) ◦ Γaut

M,(10)
(ν,Φ) ,

where the third equality comes from the fact that Ψ 7→ Γaut
V ,(1)
Ψ and λ 7→ (λ •V −) are

group actions and the fourth one from Corollary 2.1.6.(ii). �

2.1.3. Actions of the group (Aut(G)× k×)⋉ G(k〈〈X〉〉).

Definition 2.1.8. For (φ, λ,Ψ) ∈ Aut(G)×k××G(k〈〈X〉〉), we define the topological

k-algebra-module automorphism
(

Γaut
V ,(1)
(φ,λ,Ψ),

Γaut
V ,(10)
(φ,λ,Ψ)

)
of

(
V̂DR
G , V̂DR

G

)
given by

(
Γaut

V ,(1)
(φ,λ,Ψ),

Γaut
V ,(10)
(φ,λ,Ψ)

)
:=

(
Γaut

V ,(1)
(λ,Ψ),

Γaut
V ,(10)
(λ,Ψ)

)
◦
(
ηVφ , η

V
φ

)
,

with ηVφ ∈ Autk-algtop(V̂
DR
G ) given in (1.35).

Proposition-Definition 2.1.9. For (φ, λ,Ψ) ∈ Aut(G) × k× × G(k〈〈X〉〉), we define

the topological k-algebra-module automorphism
(

Γaut
W ,(1)
(φ,λ,Ψ),

Γaut
M,(10)
(φ,λ,Ψ)

)
of

(
ŴDR

G ,M̂DR
G

)

given by
(

Γaut
W ,(1)
(φ,λ,Ψ),

Γaut
M,(10)
(φ,λ,Ψ)

)
:=

(
Γaut

W ,(1)
(λ,Ψ) ,

Γaut
M,(10)
(λ,Ψ)

)
◦
(
ηWφ , ηMφ

)
.

It is such that the following diagrams

(2.12)

ŴDR
G ŴDR

G

V̂DR
G V̂DR

G

Γaut
W,(1)
(φ,λ,Ψ)

Γaut
V,(1)
(φ,λ,Ψ)
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and

(2.13)

V̂DR
G V̂DR

G

M̂DR
G M̂DR

G

Γaut
V,(10)
(φ,λ,Ψ)

−·1DR −·1DR

Γaut
M,(10)
(φ,λ,Ψ)

commute.

Proof. From Proposition 1.4.9.(ii) and Proposition-Definition 2.1.4, we have that the

pairs (ηWφ , ηMφ ) and
(

Γaut
W ,(1)
(λ,Ψ) ,

Γaut
M,(10)
(λ,Ψ)

)
are morphisms in k-alg-modtop; the com-

position is then a morphism in k-alg-modtop. Next, the commutativity of the diagrams
follows from the commutativity of Diagrams (1.37) and (2.9) and Diagrams (1.39) and
(2.10). �

Lemma 2.1.10. For (φ, λ,Ψ) ∈ Aut(G)× k× × G(k〈〈X〉〉), we have

Γaut
V ,(1)
(λ,ηφ(Ψ)) = ηVφ ◦ Γaut

V ,(1)
(λ,Ψ) ◦ (η

V
φ )
−1.

Proof. Since both sides are given as composition of k-algebra morphisms of V̂DR
G , it is

enough to verify this identity on generators. We have

Γaut
V ,(1)
(λ,ηφ(Ψ))(e0) = AdΓ−1

ηφ(Ψ)
(−e1)β(ηφ(Ψ)⊗1)(λe0) = AdΓ−1

Ψ (−e1)ηVφ (β(Ψ⊗1))(λe0)

= ηVφ

(
AdΓ−1

Ψ (−e1)β(Ψ⊗1)

(
λ(ηVφ )

−1(e0)
))

= ηVφ

(
AdΓ−1

Ψ (−e1)β(Ψ⊗1)

(
λe0

))

= ηVφ

(
Γaut

V ,(1)
(λ,Ψ)

(
e0
))

= ηVφ ◦ Γaut
V ,(1)
(λ,Ψ) ◦ (η

V
φ )
−1(e0),

where the second equality comes from the identity Γηφ(Ψ)(−e1) = ΓΨ(−e1) and from

the commutativity of Diagram (1.36) and the third one from the fact that ηVφ is an

algebra morphism and from the equality ηVφ (ΓΨ(−e1)) = ΓΨ(−e1). Next,

Γaut
V ,(1)
(λ,ηφ(Ψ))(e1) = AdΓ−1

ηφ(Ψ)
(−e1)

(λe1) = AdΓ−1
Ψ (−e1)

(λe1)

= ηVφ

(
AdΓ−1

Ψ (−e1)

(
λ(ηVφ )

−1(e1)
))

= ηVφ

(
AdΓ−1

Ψ (−e1)

(
λe1

))

= ηVφ

(
Γaut

V ,(1)
(λ,Ψ)(e1)

)
= ηVφ ◦ Γaut

V ,(1)
(λ,Ψ) ◦ (η

V
φ )
−1(e1),

where the second equality comes from the identity Γηφ(Ψ)(−e1) = ΓΨ(−e1) and the third

one from the fact that ηVφ is an algebra morphism and from the equality ηVφ (ΓΨ(−e1)) =

ΓΨ(−e1). Finally, for g ∈ G,

Γaut
V ,(1)
(λ,ηφ(Ψ))(g) = AdΓ−1

ηφ(Ψ)
(−e1)β(ηφ(Ψ)⊗1)(g) = AdΓ−1

Ψ (−e1)ηVφ (β(Ψ⊗1))(g)

= ηVφ

(
AdΓ−1

Ψ (−e1)β(Ψ⊗1)

(
(ηVφ )

−1(g)
))

= ηVφ

(
AdΓ−1

Ψ (−e1)β(Ψ⊗1)

(
φ−1(g)

))

= ηVφ

(
Γaut

V ,(1)
(λ,Ψ)

(
φ−1(g)

))
= ηVφ ◦ Γaut

V ,(1)
(λ,Ψ) ◦ (η

V
φ )
−1(g),



THE DOUBLE SHUFFLE TORSOR IN TERMS OF BETTI AND DE RHAM COPRODUCTS 27

where the second equality comes from the identity Γηφ(Ψ)(−e1) = ΓΨ(−e1) and from

the commutativity of Diagram (1.36), the third one from the fact that ηVφ is an algebra

morphism and from the equality ηVφ (ΓΨ(−e1)) = ΓΨ(−e1) and the fourth and sixth

ones from the fact that (ηVφ )
−1(g) = φ−1(g). �

Corollary 2.1.11. For (φ, λ,Ψ) ∈ Aut(G)× k× × G(k〈〈X〉〉) we have

(i) Γaut
W ,(1)
(λ,ηφ(Ψ)) = ηWφ ◦ Γaut

W ,(1)
(λ,Ψ) ◦ (ηWφ )−1.

(ii) Γaut
M,(10)
(λ,ηφ(Ψ)) = ηMφ ◦ Γaut

M,(10)
(λ,Ψ) ◦ (ηMφ )−1.

Proof. This follows from Lemma 2.1.10 thanks to Proposition-Definition 2.1.4 and
Lemma 1.4.8. �

Corollary 2.1.12. The group (Aut(G) × k×)⋉ G(k〈〈X〉〉) acts on (ŴDR
G ,M̂DR

G ) by

(Aut(G)×k×)⋉G(k〈〈X〉〉) → Autk-alg-mod(Ŵ
DR
G ,M̂DR

G ); (φ, λ,Ψ) 7→
(

Γaut
W ,(1)
(φ,λ,Ψ),

Γaut
M,(10)
(φ,λ,Ψ)

)

Proof. Let (φ, λ,Ψ), (φ′, ν,Φ) ∈ (Aut(G)× k×)⋊ G(k〈〈X〉〉). We have

Γaut
W ,(1)
(φ,λ,Ψ)⊛(φ′,ν,Φ) =

Γaut
W ,(1)
(φ◦φ′,λν,Ψ⊛(ηφ(λ•Φ))) =

Γaut
W ,(1)
(λν,Ψ⊛(λ•ηφ(Φ))) ◦ η

W
φ◦φ′

= Γaut
W ,(1)
(λ,Ψ)⊛(ν,ηφ(Φ)) ◦ η

W
φ ◦ ηWφ′

= Γaut
W ,(1)
(λ,Ψ) ◦ Γaut

W ,(1)
(ν,(ηφ(Φ))) ◦ η

W
φ ◦ ηWφ′

= Γaut
W ,(1)
(λ,Ψ) ◦ ηWφ ◦ Γaut

W ,(1)
(ν,Φ) ◦ (ηWφ )−1 ◦ ηWφ ◦ ηWφ′

= Γaut
W ,(1)
(λ,Ψ) ◦ ηWφ ◦ Γaut

W ,(1)
(ν,Φ) ◦ ηWφ′

= Γaut
W ,(1)
(φ,λ,Ψ) ◦

Γaut
W ,(1)
(φ′,ν,Φ),

where the second equality comes from Lemma 1.4.3, the third one from the fact that

ηW : Aut(G) → Auttop
k-alg(Ŵ

DR
G ) is a group morphism, the fourth one from Corollary

2.1.7 and the fifth one from Corollary 2.1.11.(i). Next, we have

Γaut
M,(10)
(φ,λ,Ψ)⊛(φ′,ν,Φ) =

Γaut
M,(10)
(φ◦φ′,λν,Ψ⊛(ηφ(λ•Φ))) =

Γaut
M,(10)
(λν,Ψ⊛(λ•ηφ(Φ))) ◦ η

M
φ◦φ′

= Γaut
M,(10)
(λ,Ψ)⊛(ν,ηφ(Φ)) ◦ η

M
φ ◦ ηMφ′

= Γaut
M,(10)
(λ,Ψ) ◦ Γaut

M,(10)
(ν,(ηφ(Φ))) ◦ η

M
φ ◦ ηMφ′

= Γaut
M,(10)
(λ,Ψ) ◦ ηMφ ◦ Γaut

M,(10)
(ν,Φ) ◦ (ηMφ )−1 ◦ ηMφ ◦ ηMφ′

= Γaut
M,(10)
(λ,Ψ) ◦ ηMφ ◦ Γaut

M,(10)
(ν,Φ) ◦ ηMφ′

= Γaut
M,(10)
(φ,λ,Ψ) ◦

Γaut
M,(10)
(φ′,ν,Φ),

where the second equality comes from Lemma 1.4.3, the third one from the fact that

ηM : Aut(G) → Auttopk-mod(M̂
DR
G ) is a group morphism, the fourth one from Corollary

2.1.7 and the fifth one from Corollary 2.1.11.(ii). �
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2.2. The double shuffle group as a stabilizer of a “de Rham” coproduct.

Proposition 2.2.1.

(i) The group (Aut(G) × k×)⋉ G(k〈〈X〉〉) acts on Copk-algtop(Ŵ
DR
G ) by

(φ, λ,Ψ) ·DW :=
(

Γaut
W ,(1)
(φ,λ,Ψ)

)⊗2
◦DW ◦

(
Γaut

W ,(1)
(φ,λ,Ψ)

)−1
.

(ii) The group (Aut(G) × k×)⋉ G(k〈〈X〉〉) acts on Copk-modtop
(M̂DR

G ) by

(φ, λ,Ψ) ·DM :=
(

Γaut
M,(10)
(φ,λ,Ψ)

)⊗2
◦DM ◦

(
Γaut

M,(10)
(φ,λ,Ψ)

)−1
.

Proof.

(i) This is the formula for the pull-back of the action (0.1) with C = k-algtop and

O = ŴDR
G by the group morphism (φ, λ,Ψ) 7→ Γaut

W ,(1)
(φ,λ,Ψ) of Corollary 2.1.12.

(ii) This is the formula for the pull-back of the action (0.1) with C = k-modtop and

O = M̂DR
G by the group morphism (φ, λ,Ψ) 7→ Γaut

M,(10)
(φ,λ,Ψ) of Corollary 2.1.12.

�

Definition 2.2.2.

(i) We denote Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
W ,DR
G )(k) the stabilizer subgroup of the

coproduct ∆̂W ,DR
G ∈ Copk-algtop(Ŵ

DR
G ) for the action of Proposition 2.2.1.(i).

Namely,

Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
W ,DR
G )(k) :=

{
(φ, λ,Ψ) ∈ (Aut(G)× k

×)⋉ G(k〈〈X〉〉) |
(
Γaut

W,(1)
(φ,λ,Ψ)

)⊗2

◦ ∆̂W,DR
G = ∆̂W,DR

G ◦ Γaut
W,(1)
(φ,λ,Ψ)

}
.

(ii) We denote Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
M,DR
G )(k) the stabilizer subgroup of the

coproduct ∆̂M,DR
G ∈ Copk-modtop

(M̂DR
G ) for the action of Proposition 2.2.1.(ii).

Namely,

Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
M,DR
G )(k) :=

{
(φ, λ,Ψ) ∈ (Aut(G)× k

×)⋉ G(k〈〈X〉〉) |
(
Γaut

M,(10)

(φ,λ,Ψ)

)⊗2

◦ ∆̂M,DR
G = ∆̂M,DR

G ◦ Γaut
M,(10)

(φ,λ,Ψ)

}
.

Since (G(k〈〈X〉〉),⊛) is a subgroup of (Aut(G) × k×) ⋉ G(k〈〈X〉〉), the actions of

Proposition 2.2.1 induce actions of (G(k〈〈X〉〉),⊛) on the spaces Copk-algtop(Ŵ
DR
G ) and

Copk-modtop(M̂
DR
G ). This enables us to define the stabilizer subgroups (see [Yad, (2.29)

and (2.31)])

StabG(k〈〈X〉〉)(∆̂
W,DR
G )(k) :=

{
Ψ ∈ G(k〈〈X〉〉) |

(
Γaut

W,(1)
Ψ

)⊗2

◦ ∆̂W,DR
G = ∆̂W,DR

G ◦ Γaut
W,(1)
Ψ

}
.

and

StabG(k〈〈X〉〉)(∆̂
M,DR
G )(k) :=

{
Ψ ∈ G(k〈〈X〉〉) |

(
Γaut

M,(10)
Ψ

)⊗2

◦ ∆̂M,DR
G = ∆̂M,DR

G ◦ Γaut
M,(10)
Ψ

}
.
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Moreover, we have ([Yad, Theorem 2.4.1])

(2.14) StabG(k〈〈X〉〉)(∆̂
M,DR
G )(k) ⊂ StabG(k〈〈X〉〉)(∆̂

W ,DR
G )(k).

Proposition 2.2.3. We have

(i) Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
W ,DR
G )(k) = (Aut(G)×k×)⋉StabG(k〈〈X〉〉)(∆̂

W ,DR
G )(k).

(ii) Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
M,DR
G )(k) = (Aut(G)×k×)⋉StabG(k〈〈X〉〉)(∆̂

M,DR
G )(k).

It is a consequence of the following general lemma

Lemma 2.2.4. Let us consider the semidirect product group H⋉R. If K is a subgroup
of H ⋉R containing H, then

K = H ⋉ (K ∩R).

Proof of Proposition 2.2.3. Set X = W or M. We use Lemma 2.2.4 where H =

Aut(G) × k×, R = G(k〈〈X〉〉) and K = Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
X ,DR
G )(k). We

have that

K ∩R = Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
X ,DR
G )(k) ∩ G(k〈〈X〉〉) = StabG(k〈〈X〉〉)(∆̂

X ,DR
G )(k).

Additionally, Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
X ,DR
G )(k) contains Aut(G) × k×. Therefore,

the condition of Lemma 2.2.4 is met and the result then follows. �

Finally, one has from [EF0, Theorem 1.2] that

(2.15) DMR
G
0 (k) = {Ψ ∈ StabG(k〈〈X〉〉)(∆̂

M,DR
G )(k) | (Ψ|x0) = (Ψ|x1) = 0}.

This establishes an inclusion DMR
G
0 (k) ⊂ StabG(k〈〈X〉〉)(∆̂

M,DR
G )(k) of subgroups of

(G(k〈〈X〉〉),⊛). We then have the following result:

Corollary 2.2.5. We have

(Aut(G)× k×)⋉ DMR
G
0 (k) ⊂ Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂

M,DR
G )(k)

∩

Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
W ,DR
G )(k)

Proof. Thanks to Proposition 2.2.3.(ii), we have

(2.16) Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
M,DR
G )(k) = (Aut(G) × k×)⋉ StabG(k〈〈X〉〉)(∆̂

M,DR
G )(k).

On the other hand, using equality (2.15), we obtain

(2.17) (Aut(G)× k×)⋉ DMR
G
0 (k) ⊂ (Aut(G)× k×)⋉ StabG(k〈〈X〉〉)(∆̂

M,DR
G )(k).

From equality (2.16) and inclusion (2.17), we obtain the inclusion

(Aut(G)× k×)⋉ DMR
G
0 (k) ⊂ Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂

M,DR
G )(k),

which is the wanted first inclusion. For the second inclusion, thanks to inclusion (2.14),
we have that

(Aut(G)×k×)⋉StabG(k〈〈X〉〉)(∆̂
M,DR
G )(k) ⊂ (Aut(G)×k×)⋉StabG(k〈〈X〉〉)(∆̂

W ,DR
G )(k).

Thanks to Proposition 2.2.3, this inclusion implies that

Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂
M,DR
G )(k) ⊂ Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂

W ,DR
G )(k).

�
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3. Construction of “Betti” coproducts

In this section, we construct a “Betti” version of the double shuffle formalism.

The relevant algebras and modules are introduced in §3.1 : (i) an algebra V̂B
N de-

fined as the inverse limit of an algebra VB
N endowed with a suitable filtration; (ii) an

algebra-module (ŴB
N ,M̂B

N ) composed of a subalgebra ŴB
N of V̂B

N and a k-module M̂B
N

which has a V̂B
N -module structure inducing a free rank one ŴB

N -module structure on

it. In proposition 3.1.27, we construct algebra-module isomorphisms (isoW ,ι, isoM,ι)

from (ŴB
N ,M̂B

N ) to (ŴDR
G ,M̂DR

G ) indexed by ι ∈ Emb(G). This gives rise to a fam-

ily of algebra-module isomorphisms
(

Γcomp
W ,(1)
(ι,λ,Ψ),

Γcomp
M,(10)
(ι,λ,Ψ)

)
indexed by elements

(ι, λ,Ψ) ∈ Emb(G) × k× × G(k〈〈X〉〉). In §3.2, we show that the transport by this

isomorphism of the “de Rham” pair of coproducts (∆̂W ,DR
G , ∆̂M,DR

G ) is independent
of the element (ι, λ,Ψ) ∈ DMR×(k) (see Theorem 3.2.4). This is derived from the
chain of inclusions of Corollary 2.2.5 and from the torsor structure of DMR×(k) over
(Aut(G) × k×)⋉ DMR

G
0 (k) (see Proposition 1.4.14). The resulting pair of coproducts

is denoted (∆̂W ,B
N , ∆̂M,B

N ) and equips ŴB
N and M̂B

N with Hopf algebra and coalgebra
structures respectively (see Corollary 3.2.6).

3.1. The topological algebra-module (ŴB
N ,M̂B

N ).

3.1.1. The filtered algebra VB
N . Let F2 be the free group generated by two elements

denoted X0 and X1. We consider the group morphism F2 → µN given by X0 7→ ζN
and X1 7→ 1; where ζN := e

i2π
N .

Lemma 3.1.1. The group ker(F2 → µN ) is isomorphic to the free group of rank N +1
denoted FN+1.

In order to prove this, we use the following result:

Proposition 3.1.2 (Nielsen-Schreier Theorem, see [Ste, Theorem 3]). Let F be a free
group on a non-empty set X and let H be a subgroup of F . Let σ : H\F → F be a
section of the canonical projection F → H\F such that T := σ(H\F ) is stable under
left prefixation. Then H is freely generated by

{
tx(tx)−1 | (t, x) ∈ T ×X and tx(tx)−1 6= 1

}
,

where for g ∈ F , ḡ the image of g under the composition F → H\F
σ
→ F .

Proof of Lemma 3.1.1. We apply the Nielsen-Schreier Theorem for X = {X0,X1}, F =
F2, H = ker(F2 → µN ) and σ : ker(F2 → µN )\F2 ≃ µN → F2 where the first map is
the isomorphism induced by the surjective morphism F2 → µN and the second map

given by ei
2nπ
N 7→ Xn

0 for n ∈ J0, N − 1K. Therefore, we have T = {Xn
0 , n ∈ J0, N − 1K}.

The theorem then states that ker(F2 → µN ) is freely generated by:

• Xn
0X0(Xn

0 X0)
−1 = Xn+1

0 (Xn+1
0 )−1 =

{
Xn+1

0 (Xn+1
0 )−1 = 1 if n ∈ J0, N − 2K

XN
0 1−1 = XN

0 if n = N − 1

• Xn
0X1(Xn

0 X1)
−1 = Xn

0 X1(X
n
0 )
−1 = Xn

0 X1X
−n
0
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Finally, ker(F2 → µN ) is freely generated by the N + 1 elements
{
XN

0 , (Xn
0 X1X

−n
0 )n∈J0,N−1K

}
.

Moreover, if we denote

(
X̃0,

(
X̃ζn

N

)
n∈J0,N−1K

)
the generators of the free group FN+1

of rank N + 1, one checks that correspondence

X̃0 7→ XN
0 , X̃ζn

N
7→ Xn

0 X1X
−n
0 for n ∈ J0, N − 1K

defines a free group isomorphism from FN+1 to ker(F2 → µN ). �

We then obtain the following short exact sequence

(3.1) {1} → FN+1 → F2 → µN → {1}

Next, let σ : µN → F2 be the set-theoretic section of F2 → µN given by e
i2nπ
N 7→ Xn

0
for n ∈ J0, N − 1K. Thanks to the exact sequence (3.1) we obtain a bijection

(3.2) Σ : µN × FN+1 → F2, (ζ, x) 7→ σ(ζ)x;

where FN+1 is seen as ker(F2 → µN ) ⊂ F2 thanks to Lemma 3.1.1.
The set µN × FN+1 is equipped with a right FN+1-set structure by

(ζ, x) ∗ y := (ζ, xy), for (ζ, x) ∈ µN × FN+1 and y ∈ FN+1.

The group F2 is also equipped with a right FN+1-set structure given by

x ∗ y := xy, for x ∈ F2 and y ∈ FN+1;

where FN+1 is seen as ker(F2 → µN ) ⊂ F2 thanks to Lemma 3.1.1. One checks that
(3.2) upgrades to a right FN+1-set isomorphism.
Let us consider the tensor functor

k(−) : {right FN+1-sets} −→ {right kFN+1-modules}

takingX to kX, the set of finitely supported mapsX → k. Applying this functor to the
isomorphism of right FN+1-sets (3.2), one obtains the right kFN+1-module isomorphism

(3.3) kΣ : kµN ⊗ kFN+1 → kF2,

where both the source and the target are equipped with the right kFN+1-module struc-
ture given by the right FN+1-set structure on µN × FN+1 and F2 respectively.

Let us denote I := ker(kF2 → kµN ) where kF2 → kµN is the k-algebra morphism
induced from the group morphism F2 → µN . Then I is a two-sided ideal of kF2. In
particular, I is a right kFN+1-module.
Let ε : kFN+1 → k be the augmentation morphism of the group algebra kFN+1. It is
equipped with a right regular kFN+1-module structure.

Lemma 3.1.3.

(i) The k-module isomorphism kΣ : kµN ⊗ kFN+1 → kF2 sets up a right kFN+1-
module isomorphism of I with kµN ⊗ ker(ε).

(ii) The ideal I is linearly generated by σ(ζ)(x− 1) where ζ ∈ µN and x ∈ FN+1.

Proof.
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(i) The following commutative diagram of FN+1-set morphisms

µN × FN+1 F2

µN

Σ

p1

induces a commutative diagram of kFN+1-module morphisms

kµN ⊗ kFN+1 kF2

kµN

kΣ

id⊗ε

One checks that the associated group algebra morphism of the first projection
p1 : µN × FN+1 → µN is identified with id ⊗ ε : kµN ⊗ kFN+1 → kµN thanks
to the identification kµN ⊗ kFN+1 ≃ k(µN × FN+1). Therefore, the ideal I is
mapped by the isomorphism kΣ to the ideal ker(id⊗ ε) = kµN ⊗ ker(ε).

(ii) Since ε : kFN+1 → k is the augmentation morphism, its kernel is generated by
elements x− 1 with x ∈ FN+1. Therefore, taking the image of the generators by
kΣ, we obtain generators of the ideal I as announced.

�

Proposition-Definition 3.1.4. Let VB
N be the group algebra of F2 over k endowed

with the filtration
FmVB

N = Im,

for m ∈ N, where Im is the mth-power of the ideal I with the convention that I0 = VB
N .

The filtration (FmVB
N )m∈N is an algebra filtration.

Proof. Immediate. �

Lemma 3.1.5. Let m ∈ N. The k-module isomorphism kΣ : kµN ⊗ kFN+1 → kF2

sets up a right kFN+1-module isomorphism of FmVB
N with kµN ⊗ (kFN+1)

m
0 , where

(kFN+1)0 is the augmentation ideal of the group algebra kFN+1.

Proof. If m = 0, we have kµN ⊗ kFN+1 ≃ k(µN × FN+1)
kΣ
−−→ VB

N = F0VB
N .

Next, if m = 1, we have

F1VB
N = I ≃ kµN ⊗ ker(ε) = kµN ⊗ (kFN+1)0,

where the identification is given by Lemma 3.1.3 (i).
Now, let m ≥ 2. Since kµN ⊗ kFN+1 is a right kFN+1-module, we have that

(3.4) kµN ⊗ (kFN+1)
m
0 = (kµN ⊗ (kFN+1)0) · (kFN+1)

m−1
0 .

The composition kµN ⊗ kFN+1 ≃ k(µN × FN+1)
kΣ
−−→ VB

N is a right kFN+1-module
isomorphism which, combined with the identification I ≃ kµN⊗(kFN+1)0 and equality
(3.4), gives us

kµN ⊗ (kFN+1)
m
0 ≃ I · (kFN+1)

m−1
0 ,

where (kFN+1)
m−1
0 is seen as a subset of kFN+1 = k ker(F2 → µN ) ⊂ kF2.

It remains to show that I · (kFN+1)
m−1
0 = Im. First, since (kFN+1)0 ⊂ I, we have
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I ·(kFN+1)
m−1
0 ⊂ Im. Conversely, thanks to Lemma 3.1.3 (ii), Im is linearly generated

by elements

Π((ζ1, x1), . . . , (ζm, xm)) := σ(ζ1)(x1 − 1) · · · σ(ζm)(xm − 1)

with (ζ1, x1), . . . , (ζm, xm) ∈ µN × FN+1. Moreover, we have that

Π((ζ1, x1), . . . , (ζm, xm)) = σ(ζ1) · · · σ(ζm)
(
Adσ(ζm)−1···σ(ζ2)−1(x1)− 1

)
(
Adσ(ζm)−1···σ(ζ3)−1(x2)− 1

)
· · ·

(
Adσ(ζm)−1(xm−1)− 1

)
(xm − 1).

Next, since FN+1 is a normal subgroup of F2, we have that
(
Adσ(ζm)−1···σ(ζ3)−1(x2)− 1

)
· · ·

(
Adσ(ζm)−1(xm−1)− 1

)
(xm − 1) ∈ (kFN+1)

m−1
0 .

In addition, thanks to Lemma 3.1.3 (ii), we have

σ(ζ1) · · · σ(ζm)
(
Adσ(ζm)−1···σ(ζ2)−1(x1)− 1

)
∈ kF2 · (kFN+1)0.

Since (kFN+1)0 ⊂ I, it follows that kF2 · (kFN+1)0 ⊂ kF2 · I and since I is a two-sided
ideal of kF2, we have kF2 · I = I. Therefore,

σ(ζ1) · · · σ(ζm)
(
Adσ(ζm)−1···σ(ζ2)−1(x1)− 1

)
∈ I,

and then Π((ζ1, x1), . . . , (ζm, xm)) ∈ I ·(kFN+1)
m−1
0 , thus proving the wanted inclusion.

�

3.1.2. The topological algebra V̂B
N . The decreasing filtration (FmVB

N )m∈N given in Proposition-
Definition 3.1.4 induces an algebra morphism VB

N/Fm+1VB
N → VB

N/FmVB
N . One defines

Definition 3.1.6. We denote

V̂B
N := lim

←−
VB
N/FmVB

N

the inverse limit of the system
(
VB
N/FmVB

N ,VB
N/Fm+1VB

N → VB
N/FmVB

N

)
.

The algebra V̂B
N is equipped with the filtration FmV̂B

N := lim
←−

FmVB
N/Fmax(m,l)VB

N .

When equipped with the topology defined by this filtration, V̂B
N is a complete separated

topological algebra.
Recall that kFN+1 is a group algebra equipped with a filtration given by the powers

of its augmentation ideal. Let us denote k̂FN+1 the completion of this group algebra
with respect to this filtration.

Lemma 3.1.7.

(i) The k-algebra morphism kΣ ◦ (1 ⊗ −) : kFN+1 → VB
N gives rise to a topological

k-algebra morphism k̂FN+1 → V̂B
N .

(ii) The k-module morphism kΣ : kµN ⊗ kFN+1 → VB
N gives rise to an isomorphism

of topological right k̂FN+1-module k̂Σ : kµN ⊗ k̂FN+1 → V̂B
N .

(iii) The k-algebra morphism k̂FN+1 → V̂B
N is injective.

Proof.

(i) This follows from the fact that the k-algebra morphism kΣ◦(1⊗−) : kFN+1 → VB
N

is compatible with filtrations, which follows from Lemma 3.1.5.
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(ii) This follows from the fact that kΣ : kµN ⊗ kFN+1 → VB
N is an isomorphism of

filtered right module over kFN+1 (see (3.3)).

(iii) By (i), the topological k-algebra morphism k̂FN+1 → V̂B
N is equal to the compo-

sition k̂Σ ◦ (1⊗−) : k̂FN+1 → V̂B
N . The map 1⊗− : k̂FN+1 → kµN ⊗ k̂FN+1 is

trivially injective and k̂Σ : kµN ⊗ k̂FN+1 → V̂B
N is injective by (ii). This implies

that their composition is injective, implying the claim.

�

Proposition-Definition 3.1.8. Let ι ∈ Emb(G). There is a unique topological algebra

isomorphism isoV ,ι : V̂B
N → V̂DR

G given by

X0 7→ exp

(
1

N
e0

)
gι; and X1 7→ exp(e1),

where gι = ι−1(e
i2π
N ).

Proof. Recall that the set Mork-alg(kF2, V̂
DR
G ) is identified with Morgrp

(
F2,

(
V̂DR
G

)×)
.

As a consequence, there is an algebra morphism VB
N → V̂DR

G given by

X0 7→ exp

(
1

N
e0

)
gι and X1 7→ exp(e1)

since the images of X0 and X1 are invertible. Composing the k-algebra morphism

VB
N → V̂DR

G with the k-module isomorphism kΣ : kµN ⊗ kFN+1 → VB
N and the inverse

of the k-algebra isomorphism β : k〈〈X〉〉 ⋊ G → V̂DR
G respectively from the left and

from the right, we obtain a k-module morphism

(3.5) kµN ⊗ kFN+1 → k〈〈X〉〉 ⋊G.

One checks that morphism (3.5) is a right module morphism over the k-algebra mor-
phism kFN+1 → k〈〈X〉〉 given by

X̃0 7→ exp(x0) and X̃ζn
N
7→ exp

( n

N
x0

)
exp(−xgnι ) exp

(
−

n

N
x0

)
, for n ∈ J0, N − 1K.

In addition, (ζ lN ⊗ 1)l∈J0,N−1K and
(
exp

(
l
N
x0

)
⊗ glι

)
l∈J0,N−1K

are bases of kµN ⊗kFN+1

and k〈〈X〉〉 ⋊ G respectively and the morphism (3.5) induces the following bijection
between the bases

(3.6) ζ lN ⊗ 1 7→ exp

(
l

N
x0

)
⊗ glι, for l ∈ J0, N − 1K.

Furthermore, there is a topological k-algebra isomorphism k̂FN+1 → k〈〈X〉〉 such that
the following diagram

kFN+1 k〈〈X〉〉

k̂FN+1
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commutes, where kFN+1 →֒ k̂FN+1 is the canonical k-algebra morphism.
Indeed, such an isomorphism is obtained by composing the topological k-algebra iso-

morphism k̂FN+1 → k〈〈X〉〉 obtained from [Qui, Example A2.12] and the topological

k-algebra automorphism of k̂FN+1 given by

X̃0 7→ X̃0 and X̃ζnN
7→ Adexp( n

N
log(X̃0))(X̃

−1
ζn
N
) for n ∈ J0, N − 1K.

On the other hand, one checks that kµN ⊗ k̂FN+1 is a free right k̂FN+1-module with
basis (ζ lN⊗1)l∈J0,N−1K and recall that k〈〈X〉〉⋊G is a free right k〈〈X〉〉-module with basis(
exp

(
l
N
x0

)
⊗ glι

)
l∈J0,N−1K

. Therefore, there is a unique module isomorphism kµN ⊗

k̂FN+1 → k〈〈X〉〉⋊G over the k-algebra isomorphism k̂FN+1 → k〈〈X〉〉 which extends
bijection (3.6) between bases. Therefore, the restriction to the bases of the following
diagram

(3.7)

kµN ⊗ kFN+1 k〈〈X〉〉 ⋊G

kµN ⊗ k̂FN+1

commutes, where kµN ⊗ kFN+1 → kµN ⊗ k̂FN+1 is the tensor product of the identity

of kµN with kFN+1 →֒ k̂FN+1. This implies that the diagram commutes.

Next, by composing the k-module isomorphism kµN ⊗ k̂FN+1 → k〈〈X〉〉 ⋊ G from

the left and from the right with the isomorphisms kΣ−1 : V̂B
N → kµN ⊗ k̂FN+1 and

β : k〈〈X〉〉 ⋊G → V̂B
N respectively, we obtain a k-module isomorphism V̂B

N → V̂DR
G .

Let us prove that this k-module isomorphism is a k-algebra isomorphism. It is, there-
fore, enough to show that it is a k-algebra morphism. Let us consider the following
prism

kµN ⊗ kFN+1 k〈〈X〉〉 ⋊G

kµN ⊗ k̂FN+1

VB
N V̂DR

G

V̂B
N

kΣ β

k̂Σ

The left, right and middle squares commute by definition of k̂Σ, V̂B
N → V̂DR

G and
kµN ⊗ kFN+1 → k〈〈X〉〉 ⋊ G respectively and the upper triangle is Diagram (3.7),
so is commutative. Additionally, the arrows going from the upper triangle to the
lower triangle are isomorphisms. Therefore, the lower triangle is commutative. The

restriction of the topological k-module isomorphism V̂B
N → V̂DR

G to VB
N is an algebra

morphism, which by the density of VB
N in V̂B

N implies that V̂B
N → V̂DR

G is a topological
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k-algebra morphism and therefore a topological k-algebra isomorphism. Finally, the

commutativity of the triangle also implies that the k-algebra isomorphism V̂B
N → V̂DR

G

is as announced. �

Proposition 3.1.9. Let ι ∈ Emb(G) and φ ∈ Aut(G). We have

isoV ,ι◦φ
−1

= ηVφ ◦ isoV ,ι,

with ηVφ ∈ Autk-algtop(V̂
DR
G ) given in (1.35).

Proof. Since both sides are given as a composition of topological k-algebra morphisms,
let us the equality by checking on the family of topological generators:

isoV ,ι◦φ
−1
(X1) = exp(e1) = ηVφ ◦ isoV ,ι(X1)

and

isoV ,ι◦φ
−1
(X0) = exp

(
1

N
e0

)
gι◦φ−1 = exp

(
1

N
e0

)
φ(gι) = ηVφ

(
exp

(
1

N
e0

)
gι

)

= ηVφ ◦ isoV ,ι(X0)

�

3.1.3. The filtered algebra WB
N .

Proposition-Definition 3.1.10. Let us denote

(3.8) WB
N := k⊕ VB

N (X1 − 1).

It is a subalgebra of VB
N endowed with the filtration

(3.9) FmWB
N := WB

N ∩ FmVB
N

for m ∈ N. The filtration (FmWB
N )m∈N is an algebra filtration.

Proof. Immediate. �

Lemma 3.1.11. For m ∈ N∗, we have

(i) FmWB
N = FmVB

N ∩ VB
N (X1 − 1). (ii) FmWB

N = Fm−1VB
N (X1 − 1).

Proof.

(i) Let m ∈ N∗. We have

FmWB
N =FmVB

N ∩
(
k⊕ VB

N (X1 − 1)
)

=FmVB
N ∩

(
ker(VB

N → k) ∩ (k⊕ VB
N (X1 − 1))

)

=FmVB
N ∩ VB

N (X1 − 1),

where the second equality follows from the inclusion FmVB
N ⊂ ker(VB

N → k) since

(3.10) FmVB
N = ker(VB

N → kµN )m ⊂ ker(VB
N → kµN ) ⊂ ker(VB

N → k),

where the last inclusion of (3.10) is a consequence of the fact that VB
N → k is the

composition VB
N → kµN → k (the maps with target k being the augmentation

morphisms). The third equality follows from

ker(VB
N → k) ∩ (k⊕ VB

N (X1 − 1)) = VB
N (X1 − 1)
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which, in turn, follows from the fact that ker(VB
N → k)∩ (k⊕VB

N (X1 − 1)) is the

kernel of the composed map k⊕ VB
N (X1 − 1) ⊂ VB

N → k which is the identity on
k and takes VB

N (X1 − 1) to 0. Its kernel is therefore VB
N (X1 − 1).

(ii) Recall from Lemma 3.1.5 that, for m ∈ N∗, the k-module isomorphism kΣ :
kµN ⊗ kFN+1 → VB

N induces an isomorphism

(3.11) FmVB
N ≃ kµN ⊗ (kFN+1)

m
0 ,

where (kFN+1)0 is the augmentation ideal of the group algebra kFN+1. The
isomorphism kΣ also induces an isomorphism

VB
N (X1 − 1) ≃ kµN ⊗ kFN+1(X̃ζ0

N
− 1).

Thanks to Lemma 3.11 (i), this induces the isomorphism

FmWB
N ≃ kµN ⊗

(
(kFN+1)

m
0 ∩ kFN+1(X̃ζ0

N
− 1)

)
.

Next, thanks to [Wei, Proposition 6.2.6], we have a kFN+1-module isomorphism

(kFN+1)
⊕(N+1) → (kFN+1)0. This isomorphism induces the following isomor-

phisms

kFN+1 ⊕ {0}⊕N ≃ kFN+1(Xζ0
N
− 1) and (kFN+1)

m−1
0 )⊕(N+1) ≃ (kFN+1)

m
0 ,

where for the latter one we use the fact that (kFN+1)
m
0 = (kFN+1)

m−1
0 (kFN+1)0

and the fact that (kFN+1)
m−1
0 is an ideal of kFN+1.

On the other hand, using the inclusion (kFN+1)
m−1
0 ⊂ kFN+1 and the isomor-

phism kFN+1 ⊕ {0}⊕N ≃ kFN+1(Xζ0
N
− 1), one obtains

(kFN+1)
m−1
0 )⊕(N+1) ∩

(
kFN+1 ⊕ {0}⊕N

)
= (kFN+1)

m−1
0 ⊕ {0}⊕N .

Finally, one checks that the isomorphism (kFN+1)
⊕(N+1) → (kFN+1)0 induces

an isomorphism

(kFN+1)
m−1
0 ⊕ {0}⊕N ≃ (kFN+1)

m−1
0 (X̃ζ0

N
− 1)

and using (3.11) for m replaced by m − 1, together with the fact that kΣ in-
tertwines right multiplication by X1 − 1 on VB

N with the tensor product of the

identity on kµN with right multiplication by X̃ζ0
N
− 1 on kFN+1 implies

kµN ⊗ (kFN+1)
m−1
0 (X̃ζ0

N
− 1) ≃ Fm−1VB

N (X1 − 1),

thus proving the wanted result.

�

3.1.4. The topological algebra ŴB
N . The decreasing filtration (FmWB

N )m∈N given in
(3.9) induces an algebra morphism WB

N/Fm+1WB
N → WB

N/FmWB
N .

Definition 3.1.12. We denote

ŴB
N := lim

←−
WB

N/FmWB
N

the inverse limit of the projective system (WB
N/FmWB

N ,WB
N/Fm+1WB

N → WB
N/FmWB

N ).
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The algebra ŴB
N equipped with filtration

FmŴB
N := lim

←−
FmWB

N/Fmax(m,l)WB
N

and endowed with the topology defined by this filtration is a complete separated topo-
logical algebra.

Lemma 3.1.13. The k-algebra inclusion WB
N ⊂ VB

N gives rise to an injective morphism

of topological k-algebras ŴB
N → V̂B

N .

Proof. This follows from the compatibility of the inclusion WB
N ⊂ VB

N with filtrations
and the fact that the filtration on WB

N is induced by that of VB
N . �

Proposition 3.1.14. The topological algebra ŴB
N is isomorphic to the topological sub-

algebra k⊕ V̂B
N (X1 − 1) of V̂B

N .

Proof. This will be done following this program:

Step 1: Construction of the topological k-module ŴB
N,+.

Let us define a k-submodule WB
N,+ := VB

N (X1 − 1) ⊂ WB
N . It is equipped with the

filtration
FmWB

N,+ := WB
N,+ ∩ FmWB

N , for m ∈ N

induced by the inclusion WB
N,+ ⊂ WB

N . Denote as follows the associated inverse limit

ŴB
N,+ := lim

←−
WB

N,+/F
mWB

N,+.

One checks that the k-module inclusion WB
N,+ ⊂ WB

N is compatible with the filtrations,

which induces a morphism of topological k-modules ŴB
N,+ → ŴB

N . As the filtration of

WB
N,+ is induced by that of WB

N , this morphism is injective. Thanks to Lemma 3.1.13,
we then have a chain of injections

(3.12) ŴB
N,+ →֒ ŴB

N →֒ V̂B
N .

On the other hand, for any m ∈ N∗, we have

FmWB
N,+ = WB

N,+ ∩ FmWB
N = VB

N (X1 − 1) ∩ Fm−1VB
N (X1 − 1) = Fm−1VB

N (X1 − 1),

where the second equality comes from Lemma 3.1.11 (ii). Therefore, for any m ∈ N,

(3.13) FmWB
N,+ =

{
VB
N (X1 − 1) if m = 0

Fm−1VB
N (X1 − 1) otherwise

Moreover, let us notice that WB
N = k ⊕ WB

N,+. Using (3.13) we obtain

F0WB
N = k ⊕ F0WB

N,+;

FmWB
N = FmWB

N,+, for m ∈ N∗.

These equalities induce the following topological k-algebra isomorphism

(3.14) ŴB
N = lim

←−
WB

N/FmWB
N ≃ k ⊕ lim

←−
WB

N,+/F
mWB

N,+ = k ⊕ ŴB
N,+.

where, on the right, the algebra structure is defined by the conditions that 1 ∈ k is a

unit and that the inclusion ŴB
N,+ ⊂ k⊕ ŴB

N,+ is a non-unital algebra morphism.
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Step 2: The existence of a topological k-module morphism ϕ̂ : V̂B
N → ŴB

N,+ such that
the triangle

(3.15)

ŴB
N,+ V̂B

N

V̂B
N

ϕ̂ −·(X1−1)

commutes. First, let us consider the k-module morphism ϕ : VB
N → WB

N,+ given by

v 7→ v(X1 − 1). For any m ∈ N∗, one has

ϕ(FmVB
N ) = FmVB

N (X1 − 1) ⊂ Fm−1VB
N (X1 − 1) = FmWB

N,+,

where the first equality follows from the definition of ϕ, the inclusion follows from
decreasing character of (FmVB

N )m∈N and the last equality follows from (3.13). One also
has

ϕ(F0VB
N ) = VB

N (X1 − 1) = F0WB
N,+.

This implies that the morphism ϕ : VB
N → WB

N,+ is compatible with filtrations. This

induces a k-module morphism ϕm : VB
N/FmVB

N → WB
N,+/F

mWB
N,+.

In the following prism

WB
N,+ VB

N

VB
N

WB
N,+/F

mWB
N,+ VB

N/FmVB
N

VB
N/FmVB

N

ϕ −·(X1−1)

ϕm −·(X1−1)

the upper triangle commutes by definition of ϕ : VB
N → WB

N,+ and all the squares

commute thanks to the compatibility of the maps ϕ : VB
N → WB

N,+, − · (X1 − 1) :

VB
N → VB

N and WB
N,+ ⊂ VB

N with filtrations. Therefore, thanks to the surjectivity of

the projection VB
N → VB

N/FmVB
N , the lower triangle commutes. As a consequence, the

morphism ϕ : VB
N → WB

N,+ induces a morphism of topological k-modules ϕ̂ : V̂B
N →

ŴB
N,+ such that Diagram (3.15) commutes. Finally, the commutativity of the latter

diagram implies

V̂B
N (X1 − 1) = Im

(
− ·(X1 − 1)

)

= Im
(
V̂B
N

ϕ̂
−→ ŴB

N,+ →֒ V̂B
N

)
⊂ Im

(
ŴB

N,+ →֒ V̂B
N

)
.(3.16)
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Step 3: The existence of a topological k-module morphism φ̃ : ŴB
N,+ → V̂B

N such that
the triangle

(3.17)

ŴB
N,+ V̂B

N

V̂B
N

φ̃ −·(X1−1)

commutes. First, one notices that ϕ : VB
N → WB

N,+ is a surjective k-module morphism.

It is injective thanks to the integral domain status of the algebra VB
N . Therefore,

the map ϕ : VB
N → WB

N,+ is a k-module isomorphism whose inverse will be denoted

φ : WB
N,+ → VB

N . Thanks to (3.13), the k-module isomorphism φ : WB
N,+ → VB

N

restricts to an isomorphism FmWB
N,+ → Fm−1VB

N , for any m ∈ N∗. This induces a

k-module isomorphism φm : WB
N,+/F

mWB
N,+ → VB

N/Fm−1VB
N , for any m ∈ N∗ and,

via a prism similar to the one of Step 2, one checks that the following triangle

WB
N,+/F

mWB
N,+ VB

N/FmVB
N

VB
N/Fm−1VB

N

φm −·(X1−1)

commutes where the morphism −·(X1−1) : VB
N/Fm−1VB

N → VB
N/FmVB

N is well-defined
thanks to the inclusion Fm−1VB

N (X1 − 1) ⊂ FmVB
N being a consequence of (3.13). On

the other hand, we have, for any m ∈ N∗, the following triangle

VB
N/FmVB

N

VB
N/Fm−1VB

N VB
N/FmVB

N

−·(X1−1) −·(X1−1)

πm

where πm : VB
N/FmVB

N ։ VB
N/Fm−1VB

N is the morphism which associates to the class

of an element modulo FmVB
N , its class modulo Fm−1VB

N ; this is well-defined and sur-
jective thanks to the inclusion FmVB

N ⊂ Fm−1VB
N . One then checks that this triangle

commutes. By linking the two triangles and doing the inverse limit we obtain the
following diagram

ŴB
N,+ V̂B

N

lim
←−

VB
N/Fm−1VB

N V̂B
N

φ̂

−·(X1−1)

π̂

where π̂ := lim
←−

πm : V̂B
N → lim

←−
VB
N/Fm−1VB

N is obtained by degree shifting and is

therefore a topological k-module isomorphism. Let us set φ̃ := π̂−1 ◦ φ̂ : ŴB
N,+ → V̂B

N .

It is a topological k-module morphism such that Diagram (3.17) commutes. Finally,



THE DOUBLE SHUFFLE TORSOR IN TERMS OF BETTI AND DE RHAM COPRODUCTS 41

the commutativity of the latter diagram implies

Im
(
ŴB

N,+ →֒ V̂B
N

)
= Im

(
− ·(X1 − 1) ◦ φ̃

)

⊂ Im
(
− ·(X1 − 1)

)
= V̂B

N (X1 − 1).(3.18)

Finally, combining inclusions (3.16) and (3.18) we obtain

ŴB
N,+ ≃ Im

(
ŴB

N,+ →֒ V̂B
N

)
= V̂B

N (X1 − 1).

In addition, thanks to 3.14, the topological k-algebras k⊕ŴB
N,+ and ŴB

N are isomorphic.
One then obtains the isomorphism of topological k-algebras

ŴB
N ≃ k⊕ V̂B

N (X1 − 1).

�

Proposition-Definition 3.1.15. Let ι ∈ Emb(G). There exists a topological algebra

isomorphism isoW ,ι : ŴB
N → ŴDR

G such that the following diagram

(3.19)

ŴB
N ŴDR

G

V̂B
N V̂DR

G

isoW,ι

isoV,ι

commutes.

Proof. We have

isoV ,ι(X1 − 1) = exp(e1)− 1 = ue1,

where u = f(e1) with f(x) being the invertible formal series exp(x)−1
x

. Moreover, since

isoV ,ι : V̂B
N → V̂DR

G is a k-algebra isomorphism, we obtain

isoV ,ι
(
V̂B
N (X1 − 1)

)
= isoV ,ι(V̂B

N ) isoV ,ι(X1 − 1) = V̂DR
G ue1 = V̂DR

G e1.

This implies that isoV ,ι∣∣V̂B
N
(X1−1)

: V̂B
N (X1−1) → V̂DR

G e1 is a surjective k-module morphism

which is trivially injective, therefore, is a k-module isomorphism. Taking the direct sum
with k, we obtain a k-module isomorphism

k⊕ V̂B
N (X1 − 1) → k⊕ V̂DR

G e1,

which is a k-algebra isomorphism. Finally, thanks to Lemma 3.1.14, this isomorphism

is the wanted k-algebra isomorphism isoW ,ι : ŴB
N → ŴDR

G . �

Corollary 3.1.16. Let ι ∈ Emb(G) and φ ∈ Aut(G). We have

isoW ,ι◦φ−1
= ηWφ ◦ isoW ,ι,

with ηWφ ∈ Autk-algtop(Ŵ
DR
G ) given in Lemma 1.4.8.(i).

Proof. The statement follows from Proposition 3.1.9 thanks to the commutativity of
diagrams (3.19) and (1.37). �
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3.1.5. The filtered module MB
N .

Proposition-Definition 3.1.17. The quotient k-module

(3.20) MB
N := VB

N

/
VB
N (X0 − 1)

is a VB
N -module. Moreover, if we denote 1B the class of 1 ∈ VB

N in MB
N , then the

canonical projection
− · 1B : VB

N → MB
N

is a surjective VB
N -module morphism and its restriction to WB

N is a WB
N -module iso-

morphism.

Proof. This follows from the direct sum decomposition

VB
N = k⊕ VB

N (X1 − 1)⊕ VB
N (X0 − 1) = WB

N ⊕ VB
N (X0 − 1)

given by [Wei, Proposition 6.2.6]. �

Remark. The statement implies that (− · 1B)|WB
N

: WB
N → MB

N is a WB
N -module

isomorphism, therefore MB
N is a free WB

N -module of rank 1.

Proposition-Definition 3.1.18. The k-module MB
N is endowed with the decreasing

k-module filtration given by

(3.21) FmMB
N := FmWB

N · 1B for m ∈ N.

Moreover, the pair
(
MB

N ,
(
FmMB

N

)
m∈N

)
is a filtered module over the filtered algebra

(
WB

N ,
(
FmWB

N

)
m∈N

)
.

Proof. Immediate. �

Lemma 3.1.19.

(i) For any m ∈ N, the k-module isomorphism − · 1B : WB
N → MB

N induces a

k-modules isomorphism FmWB
N → FmMB

N .
(ii) For any m ∈ N, we have FmMB

N = FmVB
N · 1B.

Proof.

(i) By definition of FmMB
N , the isomorphism − · 1B : WB

N → MB
N restricts to a

surjective k-module morphism FmWB
N → FmMB

N . In addition, since − · 1B :
WB

N → MB
N is injective, so is the restriction FmWB

N → FmMB
N .

(ii) First, if m = 0, the equality follows from Proposition-Definition 3.1.17.
From now on, let m ∈ N∗. Since FmWB

N ⊂ FmVB
N , we have that

FmMB
N ⊂ FmVB

N · 1B.

Conversely, let us prove the inclusion FmVB
N · 1B ⊂ FmMB

N . This inclusion is
equivalent to

FmVB
N ⊂ FmWB

N + VB
N (X0 − 1).

Since FmVB
N = Im = ker(VB

N → kµN )m and by Lemma 3.1.11 (i), this inclusion
is also equivalent to

(3.22) Im ⊂
(
Im ∩ VB

N (X1 − 1)
)
+ VB

N (X0 − 1).
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We have

I = ker(VB
N → kµN ) ⊂ ker(VB

N → k) = VB
N (X0 − 1) + VB

N (X1 − 1),

with ker(VB
N → k) being the augmentation ideal of the group algebra VB

N = kF2

and the last equality being a consequence of [Wei, Proposition 6.2.6].
This implies

Im = Im−1I ⊂ Im−1
(
VB
N(X1 − 1) + VB

N (X0 − 1)
)

⊂ Im−1VB
N (X1 − 1) + VB

N (X0 − 1).(3.23)

Moreover, VB
N (X1 − 1) ⊂ ker(VB

N → kµN ) since X1 − 1 7→ 0 through the map

VB
N → kµN . This implies

(3.24) Im−1VB
N (X1 − 1) ⊂ Im−1I = Im.

On the other hand, we have

(3.25) Im−1VB
N (X1 − 1) ⊂ VB

N (X1 − 1).

From (3.24) and (3.25) we obtain

(3.26) Im−1VB
N (X1 − 1) ⊂

(
Im ∩ VB

N (X1 − 1)
)
.

Finally, from (3.23) and (3.26), we obtain

Im ⊂
(
Im ∩ VB

N (X1 − 1)
)
+ VB

N (X0 − 1),

which is the wanted inclusion.

�

3.1.6. The topological module M̂B
N . The decreasing filtration (FmMB

N )m∈N given in

(3.21) induces a k-module morphism MB
N/Fm+1MB

N → MB
N/FmMB

N .

Definition 3.1.20. We denote

M̂B
N := lim

←−
MB

N/FmMB
N .

the limit of the projective system (MB
N/FmMB

N ,MB
N/Fm+1MB

N → MB
N/FmMB

N ).

The k-module M̂B
N is a V̂B

N -module equipped with the filtration

FmM̂B
N := lim

←−
FmMB

N/Fmax(m,l)MB
N , for m ∈ N.

When equipped with the topology defined by this filtration, M̂B
N is a complete separated

topological k-module.

Lemma 3.1.21.

(i) The surjective k-module morphism − · 1B : VB
N → MB

N induces a topological

surjective k-module morphism −̂ · 1B : V̂B
N → M̂B

N .
(ii) The k-module isomorphism − · 1B : WB

N → MB
N induces a topological k-module

isomorphism −̂ · 1B : ŴB
N → M̂B

N .

Proof.

(i) By definition of V̂B
N and M̂B

N , this follows from Lemma 3.1.19 (ii).
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(ii) By definition of M̂B
N , this follows from Lemma 3.1.19 (i).

�

Corollary 3.1.22.

(i) The pair (V̂B
N ,M̂B

N ) is an object in the category k-alg-modtop.

(ii) The pair (ŴB
N ,M̂B

N ) is an object in the category k-alg-modtop. Moreover, M̂B
N

is a free ŴB
N -module of rank 1.

Proof. It immediately follows from Lemma 3.1.21. �

Proposition 3.1.23. The topological k-module morphism −̂ · 1B : V̂B
N → M̂B

N induces

an isomorphism V̂B
N

/
V̂B
N (X0 − 1) → M̂B

N of topological k-modules.

In order to prove this, we will need the following Lemma:

Lemma 3.1.24. Let V be a k-module and u be an endomorphism of V . Let f : V N →
V N be the endomorphism given by

(v0, . . . , vN−1) 7→ (u(vN−1)− v0, v0 − v1, v1 − v2, . . . , vN−2 − vN−1).

Then we have an isomorphism

coker(f) ≃ coker(u− id).

Proof of Lemma 3.1.24. Let us consider the k-module morphism sum : V N → V given
by (v0, . . . , vN−1) 7→ v0 + · · · + vN−1. This morphism sends Im(f) to Im(u − id).
Therefore, there is a unique k-module morphism V N/Im(f) → V/Im(u− id) such that
the diagram

V N V

V N/Im(f) V/Im(u− id)

sum

commutes. Let us show that the morphism V N/Im(f) → V/Im(u − id) is an isomor-
phism. First, the surjectivity of the morphism sum : V N → V implies that the mor-
phism V N/Im(f) → V/Im(u−id) is surjective as well. Second, let (w0, . . . , wN−1) ∈ V N

such that there exists an element v ∈ V such that w0+· · ·wN−1 = u(v)−v. The element
(v0, . . . , vN−1) ∈ V N given by

vN−1 = v, vN−2 = wN−1 + v, vN−3 = wN−2 + wN−1 + v, . . . , v0 = w1 + · · ·wN−1 + v

is such that

(w0, . . . , wN−1) = (u(vN−1)− v0, v0 − v1, . . . , vN−2 − vN−1) ∈ Im(f).

Thus proving the injectivity of V N/Im(f) → V/Im(u− id). �

Proof of Proposition 3.1.23. The proof consists of the following steps:

Step 1: Construction of the k-module isomorphism P0 : (kFN+1)
N → VB

N .
As in (3.3), one defines the k-module isomorphism kFN+1 ⊗ kµN → VB

N such that for
(x, ζ) ∈ FN+1 × µN

(3.27) x⊗ ζ 7→ xσ(ζ),
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where FN+1 is seen as ker(F2 → µN ) ⊂ F2 thanks to Lemma 3.1.1. Moreover, one
checks there is a k-module isomorphism (kFN+1)

N → kFN+1 ⊗ kµN given by

(3.28) (v0, . . . , vN−1) 7→

N−1∑

i=0

vi ⊗ ζ iN .

Therefore, the composition P0 : (kFN+1)
N → kFN+1 ⊗ kµN → VB

N is a k-module
isomorphism and is given by

(v0, . . . , vN−1) 7→ v0 + v1X0 + · · · + vN−1X
N−1
0 .

Step 2: Identification of MB
N .

One checks that the endomorphism f : (kFN+1)
N → (kFN+1)

N given by

(3.29) (v0, . . . , vN−1) 7→ (vN−1X̃0 − v0, v0 − v1, v1 − v2, . . . , vN−2 − vN−1),

is such that the following diagram

(3.30)

(kFN+1)
N (kFN+1)

N

VB
N VB

N

f

P0 P0

−·(X0−1)

commutes. This induces a k-module isomorphism coker(f) ≃ coker(− · (X0 − 1)).

On the other hand, by applying Lemma 3.1.24 with V = kFN+1 and u = − · X̃0, we
obtain an isomomorphism coker(f) ≃ coker(u− id). It then follows that

MB
N = VB

N/VB
N (X0 − 1) = coker(− · (X0 − 1))

≃ coker(f) ≃ coker(u− id) = kFN+1/kFN+1(X̃0 − 1).

Step 3: Compatibility of the isomorphism kFN+1/kFN+1(X̃0 − 1) → MB
N with filtra-

tions. Let us show that for any m ∈ N, we have

(kFN+1)
m
0

/(
(kFN+1)

m
0 ∩ kFN+1(X̃0 − 1)

)
≃ FmMB

N .

If m = 0, this has been proved in Step 2. From now on, let us assume that m ∈ N∗.

The isomorphism kFN+1/kFN+1(X̃0 − 1) → MB
N fits in the following commutative

diagram

(3.31)

kFN+1 VB
N

kFN+1/kFN+1(X̃0 − 1) MB
N

≃

where kFN+1 → VB
N is the group algebra morphism induced by the group morphism

FN+1 ≃ ker(F2 → µN ) ⊂ F2 obtained in Lemma 3.1.1. This group algebra morphism
induces the injection

(kFN+1)
m
0 →֒ FmVB

N .
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Then, thanks to the commutativity of Diagram (3.31), the k-module isomorphism

kFN+1/kFN+1(X̃0 − 1) → MB
N induces an injection

(kFN+1)
m
0

/(
(kFN+1)

m
0 ∩ kFN+1(X̃0 − 1)

)
→֒ FmVB

N · 1B = FmMB
N ,

where the equality comes from Lemma 3.1.19.(ii). This implies that

Im
(
(kFN+1)

m
0

/(
(kFN+1)

m
0 ∩ kFN+1(X̃0 − 1)

)
→ MB

N

)
⊂ FmMB

N .

Conversely, let us show the opposite inclusion. Thanks to Lemma 3.1.11(ii), we have

FmMB
N = FmWB

N · 1B = Fm−1VB
N (X1 − 1) · 1B.

Moreover, we have by definition that Fm−1VB
N = (F1VB

N )m−1. This implies, thanks to
Lemma 3.1.3 (ii) that Fm−1VB

N (X1 − 1) · 1B is linearly generated by elements

σ(ζ1)(x1 − 1) · · · σ(ζm−1)(xm−1 − 1)(X1 − 1) · 1B

with (ζ1, x1), . . . , (ζm−1, xm−1) ∈ µN × FN+1. Additionally, we have that

σ(ζ1)(x1 − 1) · · · σ(ζm−1)(xm−1 − 1)(X1 − 1) · 1B =
(
Adσ(ζ1)(x1)− 1

)
· · ·

(
Adσ(ζ1)···σ(ζm−1)(xm−1)− 1

) (
Adσ(ζ1)···σ(ζm−1)(X1)− 1

)

σ(ζ1) · · · σ(ζm−1) · 1B =
(
Adσ(ζ1)(x1)− 1

)
· · ·

(
Adσ(ζ1)···σ(ζm−1)(xm−1)− 1

) (
Adσ(ζ1)···σ(ζm−1)(X1)− 1

)
· 1B

which belongs to the image of (kFN+1)
m
0

/(
(kFN+1)

m
0 ∩ kFN+1(X̃0 − 1)

)
by the iso-

morphism kFN+1/kFN+1(X̃0 − 1) → MB
N as

(
Adσ(ζ1)(x1)− 1

)
· · ·

(
Adσ(ζ1)···σ(ζm−1)(xm−1)− 1

) (
Adσ(ζ1)···σ(ζm−1)(X1)− 1

)
,

seen as an element of kFN+1, belongs to (kFN+1)
m
0 . This implies that

FmMB
N ⊂ Im

(
(kFN+1)

m
0

/(
(kFN+1)

m
0 ∩ kFN+1(X̃0 − 1)

)
→ MB

N

)
.

Therefore, one has equality

Im
(
(kFN+1)

m
0

/(
(kFN+1)

m
0 ∩ kFN+1(X̃0 − 1)

)
→ MB

N

)
= FmMB

N ,

which establishes the wanted isomorphism.

Step 4: Identification of M̂B
N .

Thanks to Step 3, one has for any m ∈ N

MB
N/FmMB

N ≃ kFN+1

/(
kFN+1(X̃0 − 1) + (kFN+1)

m
0

)

and, on the other hand, for any m ∈ N∗,

kFN+1

/(
kFN+1(X̃0 − 1) + (kFN+1)

m
0

)
≃ coker

(
kFN+1/(kFN+1)

m−1
0 → kFN+1/(kFN+1)

m
0

)
,

where the morphism

(3.32) kFN+1/(kFN+1)
m−1
0 → kFN+1/(kFN+1)

m
0

is induced by the endomorphism − · (X̃0 − 1) of kFN+1. Therefore,

M̂B
N ≃ lim

←−
coker

(
kFN+1/(kFN+1)

m−1
0 → kFN+1/(kFN+1)

m
0

)
.
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Step 5: Identification of V̂B
N/V̂B

N (X0 − 1).
As in Lemma 3.1.5, one proves that the k-module isomorphism kFN+1 ⊗ kµN → VB

N

given in (3.27) allows us to identify (kFN+1)
m
0 ⊗ kµN with FmVB

N for any m ∈ N.
Recall the isomorphism (kFN+1)

N → kFN+1⊗kµN given in (3.28). One checks that it

is compatible with the filtration of (kFN+1)
N given for any m ∈ N by

∏N
i=1(kFN+1)

m
0 .

Therefore the isomorphism P0 : (kFN+1)
N → kFN+1 ⊗ kµN → VB

N of Step 1 is com-
patible with filtrations. Therefore, it extends to a topological k-module isomorphism

P̂0 : ̂(kFN+1)N → V̂B
N .

On the other hand, the endomorphism f : (kFN+1)
N → (kFN+1)

N given in (3.29)

is compatible with filtrations and then extends to a topological endomorphism f̂ :
̂(kFN+1)N → ̂(kFN+1)N and, thanks to Diagram (3.30), it is such that the following

diagram

̂(kFN+1)N ̂(kFN+1)N

V̂B
N V̂B

N

f̂

≃ ≃

−·(X0−1)

commutes. This induces a k-module isomorphism coker(f̂) ≃ coker(− · (X0 − 1)).

Similarly to Step 1, by applying Lemma 3.1.24 with V = k̂FN+1 and u = − · X̃0, we

obtain an isomomorphism coker(f̂) ≃ coker(u− id). It then follows that

V̂B
N/V̂B

N (X0 − 1) = coker(− · (X0 − 1))

≃ coker(f̂) ≃ coker(u− id) = k̂FN+1/k̂FN+1(X̃0 − 1).

On the other hand, we have

k̂FN+1/k̂FN+1(X̃0 − 1) ≃ coker
(
lim
←−

kFN+1/(kFN+1)
m−1
0 → lim

←−
kFN+1/(kFN+1)

m
0

)
,

where the morphism lim
←−

kFN+1/(kFN+1)
m−1
0 → lim

←−
kFN+1/(kFN+1)

m
0 is induced by

the morphism kFN+1/(kFN+1)
m−1
0 → kFN+1/(kFN+1)

m
0 given in (3.32).

Step 6: Cokernel of limits and limit of cokernels coincide.
For any m ∈ N∗, the morphism

(3.33) kFN+1/(kFN+1)
m−1
0 → kFN+1/(kFN+1)

m
0

induced by the endomorphism − · (X̃0 − 1) of kFN+1 is injective. Indeed, let x ∈

kFN+1 such that x(X̃0 − 1) ∈ (kFN+1)
m
0 . Let l to be the smallest integer such that

x ∈ (kFN+1)
l
0. Let us show that l ≥ m − 1. Otherwise, since x ∈ (kFN+1)

l
0, we have

that [x] ∈ grl(kFN+1). Moreover, we have that [X̃0 − 1] ∈ gr1(kFN+1). Therefore,

[x(X̃0 − 1)] ∈ grl+1(kFN+1). Since, by assumption, l + 1 ≤ m − 1, the condition

x(X̃0 − 1) ∈ (kFN+1)
m
0 implies that [x(X̃0 − 1)] = 0. Finally, since grl+1(kFN+1) is

an integral domain we would obtain that [x] = 0, contradicting the minimality of l.
Therefore, l ≥ m− 1 and the morphism (3.33) is injective.
In addition, the image of morphism (3.33) is the same as the image of the morphism
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kFN+1/(kFN+1)
m
0 → kFN+1/(kFN+1)

m
0 induced by the endomorphism − · (X̃0 − 1) of

kFN+1. We then have the short exact sequence

{0} → kFN+1/(kFN+1)
m−1
0 → kFN+1/(kFN+1)

m
0

→ coker
(
(kFN+1/(kFN+1)

m
0 → kFN+1/(kFN+1)

m
0 )

)
→ {0}

which, by applying the inverse limit functor, gives us

{0} → lim
←−

kFN+1/(kFN+1)
m−1
0 → lim

←−
kFN+1/(kFN+1)

m
0 →

lim
←−

coker
(
(kFN+1/(kFN+1)

m
0 → kFN+1/(kFN+1)

m
0 )

)
→ lim
←−

1 kFN+1/(kFN+1)
m−1
0 ,

where lim←−
1 is the functor given in [BK72, §IX.2.1].

Since the transition maps of the inverse system (kFN+1/(kFN+1)
m−1
0 )m∈N∗ are surjec-

tive, this implies that lim
←−

1 kFN+1/(kFN+1)
m−1
0 = 0 (see, for example, [BK72, Propos-

tion IX.2.4]). As a consequence,

lim
←−

coker
(
(kFN+1/(kFN+1)

m
0 → kFN+1/(kFN+1)

m
0 )

)
≃

coker
(
lim
←−

(kFN+1/(kFN+1)
m
0 → lim

←−
kFN+1/(kFN+1)

m
0 )

)
.

Thanks to Step 4 and Step 5, this proves the wanted result.

�

Proposition-Definition 3.1.25. Let ι ∈ Emb(G). There exists an unique topological

k-module isomorphism isoM,ι : M̂B
N → M̂DR

G such that the following diagram

(3.34)

V̂B
N V̂DR

G

M̂B
N M̂DR

G

isoV,ι

−̂·1B −̂·1DR

isoM,ι

commutes.

Proof. Let us construct a topological module morphism isoM,ι : M̂B
N → M̂DR

G over the

topological algebra morphism isoV ,ι : V̂B
N → V̂DR

G . We consider the composition

(3.35) V̂B
N

isoV,ι

−−−→ V̂DR
G

−̂·1DR−−−−→ M̂DR
G .

This composition sends the k-submodule V̂B
N (X0 − 1) to 0. Indeed, this comes from

the fact that (3.35) is a module morphism over the algebra morphism isoV ,ι and the
following computation

isoV,ι(X0 − 1) = gι exp
(

1
N
e0
)
− 1 = gι

(
exp

(
1
N
e0
)
− 1

)
+ (gι − 1) ∈ V̂DRe0 + V̂DR(gι − 1)

Therefore, thanks to Proposition 3.1.23, the composition (3.35) factorises into a k-

module morphism isoM,ι : M̂B
N → M̂DR

G which is a module morphism over the algebra

morphism isoV ,ι : V̂B
N → V̂DR

G .

Next, let us show that isoM,ι : M̂B
N → M̂DR

G is an isomorphism. Recall from Proposi-

tion 3.1.15 that isoW ,ι : ŴB
N → ŴDR

G is an algebra submorphism of isoV ,ι : V̂B
N → V̂DR

G .
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As a result, isoM,ι : M̂B
N → M̂DR

G is a module morphism over the algebra isomorphism

isoW ,ι : ŴB
N → ŴDR

G . In addition, M̂B
N and M̂DR

G are both free rank 1 modules over

ŴB
N and ŴDR

G respectively and isoM,ι sends 1B to 1DR and therefore a basis of the

source to a basis of the target. Thus isoM,ι : M̂B
N → M̂DR

G is a module isomorphism

over isoW ,ι and then a k-module isomorphism. �

Remark 3.1.26. Let us notice that we have the following equality of k-submodules of

V̂DR
G :

V̂DR
G (gι exp(e0)− 1) = V̂DR

G e0 + V̂DR
G (gι − 1).

Indeed, since we have that

gι exp(e0)− 1 = gι(exp(e0)− 1) + (gι − 1),

this gives us the inclusion V̂DR
G (gι exp(e0)− 1) ⊂ V̂DR

G e0 + V̂DR
G (gι − 1). Conversely, the

inclusion V̂DR
G e0 + V̂DR

G (gι − 1) ⊂ V̂DR
G (gι exp(e0)− 1) follows from

e0 =
e0

exp(Ne0)− 1

(
1 + gι exp(e0) + · · ·+ gN−1ι exp((N − 1)e0)

)
(gι exp(e0)− 1)

and from

gι − 1 =exp(−e0)(gι exp(e0)− 1) + (exp(−e0)− 1)

=exp(−e0)(gι exp(e0)− 1)+

exp(−e0)− 1

exp(Ne0)− 1

(
1 + gι exp(e0) + · · · + gN−1ι exp((N − 1)e0)

)
(gι exp(e0)− 1)

=
(
exp(−e0) +

exp(−e0)−1
exp(Ne0)−1

(
1 + gι exp(e0) + · · ·+ gN−1ι exp((N − 1)e0)

))
(gι exp(e0)− 1).

Proposition 3.1.27. For any (λ,Ψ) ∈ k× × G(k〈〈X〉〉), the following pairs are iso-
morphisms in the category k-alg-modtop:

(i)
(
isoV ,ι, isoM,ι

)
: (V̂B

N ,M̂B
N ) → (V̂DR

G ,M̂DR
G ).

(ii)
(
isoW ,ι, isoM,ι

)
: (ŴB

N ,M̂B
N ) → (ŴDR

G ,M̂DR
G ).

Proof.

(i) The fact that isoV ,ι (resp. isoM,ι) is a k-algebra (resp k-module) isomorphism
follows from Proposition-Definition 3.1.8 (resp. Proposition-Definition 3.1.25).

Let (a,m) ∈ V̂B
N × M̂B

N . There exists v ∈ V̂B
N such that m = v · 1B. We have

isoM,ι(am) =isoM,ι(av · 1B) = isoV ,ι(av) · 1DR = isoV ,ι(a) isoV ,ι(v) · 1DR

=isoV ,ι(a) isoM,ι(v · 1B) = isoV ,ι(a) isoM,ι(m),

where the second and fourth equalities come from Proposition-Definition 3.1.25.
(ii) The fact that isoW ,ι (resp. isoM,ι) is a k-algebra (resp k-module) isomorphism

follows from Proposition-Definition 3.1.15 (resp. Proposition-Definition 3.1.25).

One proves, for any (w,m) ∈ ŴB
N × M̂B

N , that

isoM,ι(wm) = isoW ,ι(w)isoM,ι(m)

using the argument of (i) and Proposition-Definition 3.1.15.

�
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Corollary 3.1.28. Let ι ∈ Emb(G) and φ ∈ Aut(G). We have

isoM,ι◦φ−1
= ηMφ ◦ isoM,ι,

with ηMφ ∈ Autk-algtop(M̂
DR
G ) given in Lemma 1.4.8.(ii).

Proof. It follows from Proposition 3.1.9 thanks to the commutativity of diagrams (3.34)
and (1.39). �

3.2. The coproducts ∆̂W ,B
N and ∆̂M,B

N .

3.2.1. Comparison isomorphisms.

Definition 3.2.1. For (ι, λ,Ψ) ∈ Emb(G)×k××G(k〈〈X〉〉), we define the topological
k-algebra-module isomorphism

(3.36)
(

Γcomp
V ,(1)
(ι,λ,Ψ),

Γcomp
V ,(10)
(ι,λ,Ψ)

)
: (V̂B

N , V̂B
N ) → (V̂DR

G , V̂DR
G )

given by
(

Γcomp
V ,(1)
(ι,λ,Ψ),

Γcomp
V ,(10)
(ι,λ,Ψ)

)
:=

(
Γaut

V ,(1)
(λ,Ψ),

Γaut
V ,(10)
(λ,Ψ)

)
◦
(
isoV ,ι, isoV ,ι

)

Proposition-Definition 3.2.2. For (ι, λ,Ψ) ∈ Emb(G)× k× × G(k〈〈X〉〉), we define
the topological k-algebra-module isomorphism

(3.37)
(

Γcomp
W ,(1)
(ι,λ,Ψ),

Γcomp
M,(10)
(ι,λ,Ψ)

)
: (ŴB

N , ŴB
N ) → (ŴDR

G , ŴDR
G )

given by
(

Γcomp
W ,(1)
(ι,λ,Ψ),

Γcomp
M,(10)
(ι,λ,Ψ)

)
:=

(
Γaut

W ,(1)
(λ,Ψ) ,

Γaut
M,(10)
(λ,Ψ)

)
◦
(
isoW ,ι, isoM,ι

)
.

It is such that the following diagrams

(3.38)

ŴB
N ŴDR

N

V̂B
N V̂DR

N

Γcomp
W,(1)
(ι,λ,Ψ)

Γcomp
V,(1)
(ι,λ,Ψ)

and

(3.39)

V̂B
N V̂DR

G

M̂B
N M̂DR

G

Γcomp
V,(10),ι
(λ,Ψ)

−̂·1B −̂·1DR

Γcomp
M,(10),ι
(λ,Ψ)

commute.
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Proof. From Proposition-Definition 2.1.4 and Proposition 3.1.27.(ii), we have that the

pairs
(

Γaut
W ,(1)
(λ,Ψ)

, Γaut
M,(10)
(λ,Ψ)

)
and

(
isoW ,ι, isoW ,ι

)
are isomorphisms in k-alg-modtop;

the composition is then an isomorphism in k-alg-modtop. Next, the commutativity
of the diagrams follows from the commutativity of Diagrams (2.9) and (3.19) and
Diagrams (2.10) and (3.34). �

Recall the action of the group (Aut(G)×k×)⋉G(k〈〈X〉〉) on Emb(G)×k××G(k〈〈X〉〉)
given in Corollary 1.4.6. One has the following result:

Proposition 3.2.3. For (φ, λ,Ψ) ∈ Aut(G)×k××G(k〈〈X〉〉) and (ι, ν,Φ) ∈ Emb(G)×
k× × G(k〈〈X〉〉), we have

(i) Γcomp
W ,(1)
(φ,λ,Ψ)·(ι,ν,Φ) =

Γaut
W ,(1)
(φ,λ,Ψ) ◦

Γcomp
W ,(1),ι
(ι,ν,Φ) .

(ii) Γcomp
M,(10)
(φ,λ,Ψ)·(ι,ν,Φ) =

Γaut
M,(10)
(φ,λ,Ψ) ◦

Γcomp
M,(10),ι
(ι,ν,Φ) .

Proof.

(i) We have

Γcomp
W ,(1)
(φ,λ,Ψ)·(ι,ν,Φ)

= Γcomp
W ,(1)
(ι◦φ−1,λν,Ψ⊛ηφ(λ•Φ))

= Γaut
W ,(1)
(λ,Ψ)⊛(ν,ηφ(Φ))

◦ isoW ,ι◦φ−1

= Γaut
W ,(1)
(λ,Ψ) ◦ Γaut

W ,(1)
(ν,ηφ(Φ)) ◦ η

W
φ ◦ isoW ,ι

= Γaut
W ,(1)
(λ,Ψ) ◦ ηWφ ◦ Γaut

W ,(1)
(ν,Φ) ◦ isoW ,ι

= Γaut
W ,(1)
(φ,λ,Ψ) ◦

Γcomp
W ,(1)
(ι,ν,Φ),

where the second equality follows from Lemma 1.4.3, the third equality from
Corollary 2.1.7 and Corollary 3.1.16 and the fourth one from Corollary 2.1.11.(i).

(ii) We have

Γcomp
M,(10)
(φ,λ,Ψ)·(ι,ν,Φ) =

Γcomp
M,(10)
(ι◦φ−1,λν,Ψ⊛ηφ(λ•Φ))

= Γaut
M,(10)
(λ,Ψ)⊛(ν,ηφ(Φ)) ◦ iso

M,ι◦φ−1

= Γaut
M,(10)
(λ,Ψ) ◦ Γaut

M,(10)
(ν,ηφ(Φ)) ◦ η

M
φ ◦ isoM,ι

= Γaut
M,(10)
(λ,Ψ) ◦ ηMφ ◦ Γaut

M,(10)
(ν,Φ) ◦ isoM,ι

= Γaut
M,(10)
(φ,λ,Ψ) ◦

Γcomp
M,(10)
(ι,ν,Φ) ,

where the second equality follows from Lemma 1.4.3, the third equality from
Corollary 2.1.7 and Corollary 3.1.28 and the fourth one from Corollary 2.1.11.(ii).

�

3.2.2. The coproducts ∆̂W ,B
N and ∆̂M,B

N .

Theorem 3.2.4. The composition
(((

Γcomp
W,(1)
(ι,ν,Φ)

)⊗2
)−1

,

((
Γcomp

M,(10)
(ι,ν,Φ)

)⊗2
)−1

)
◦
(
∆̂W,DR

G , ∆̂M,DR
G

)
◦
(

Γcomp
W,(1)
(ι,ν,Φ),

Γcomp
M,(10)
(ι,ν,Φ)

)
:

(
ŴB

N ,M̂B
N

)
→

(
(ŴB

N )⊗2, (M̂B
N )⊗2

)



52 YADDADEN KHALEF

is independent of the choice of (ι, ν,Φ) ∈ DMR×(k). We denote it (∆̂W ,B
N , ∆̂M,B

N ).

Moreover, the pair (∆̂W ,B
N , ∆̂M,B

N ) is an element of Copk-alg-modtop

(
ŴB

N ,M̂B
N

)
.

Proof. Let (ι, ν,Φ) and (ι′, ν ′,Φ′) ∈ DMR×(k). Thanks to Proposition 1.4.14, there
exists a unique (φ, λ,Ψ) ∈ (Aut(G)×k×)⋉DMR

G
0 (k) such that (ι′, ν ′,Φ′) = (φ, λ,Ψ) ·

(ι, ν,Φ). We have
((

Γcomp
M,(10)
(ι′,ν′,Φ′)

)⊗2)−1
◦ ∆̂M,DR

G ◦ Γcomp
M,(10)
(ι′,ν′,Φ′)

=

((
Γcomp

M,(10)
(φ,λ,Ψ)·(ι,ν,Φ)

)⊗2)−1
◦ ∆̂M,DR

G ◦ Γcomp
M,(10)
(φ,λ,Ψ)·(ι,ν,Φ)

=

((
Γcomp

M,(10)
(ι,ν,Φ)

)⊗2)−1
◦

((
Γaut

M,(10)
(φ,λ,Ψ)

)⊗2)−1
◦ ∆̂M,DR

G ◦ Γaut
M,(10)
(φ,λ,Ψ) ◦

Γcomp
M,(10)
(ι,ν,Φ)

=

((
Γcomp

M,(10)
(ι,ν,Φ)

)⊗2)−1
◦ ∆̂M,DR

G ◦ Γcomp
M,(10)
(ι,ν,Φ) ,

where the second equality comes from Proposition 3.2.3.(ii) and the last equality from

the inclusion (Aut(G) × k×) ⋉ DMR
G
0 (k) ⊂ Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂

M,DR
G )(k) of

Corollary 2.2.5. Similary, we prove that
((

Γcomp
W,(1)
(ι′,ν′,Φ′)

)⊗2
)−1

◦ ∆̂W,DR
G

◦ Γcomp
W,(1)
(ι′,ν′,Φ′)

=

((
Γcomp

W,(1)
(ι,ν,Φ)

)⊗2
)−1

◦ ∆̂W,DR
G

◦ Γcomp
W,(1)
(ι,ν,Φ)

,

by replacing M, (10) (resp. M,DR) by W, (1) (resp. W,DR) in the exponents and the
use of Proposition 3.2.3.(ii) by that of Proposition 3.2.3.(i); and using the the inclusion

(Aut(G) × k×)⋉ DMR
G
0 (k) ⊂ Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)(∆̂

W ,DR
G )(k) of Corollary 2.2.5.

Finally,
(
∆̂W ,B

N , ∆̂M,B
N

)
is an element of Copk-alg-modtop

(
ŴB

N ,M̂B
N

)
since the pair

(
∆̂W ,DR

G , ∆̂M,DR
G

)
is an element of Copk-alg-modtop

(
ŴDR

G ,M̂DR
G

)
thanks to Lemma

1.1.3 and the pair
(

Γcomp
W ,(1)
(ι,λ,Ψ),

Γcomp
M,(10)
(ι,λ,Ψ)

)
is a k-algebra-module isomorphism

thanks to Proposition-Definition 3.2.2. �

Corollary 3.2.5. We have ∆̂M,B
N (1B) = 1⊗2B .

Proof. From Theorem 3.2.4, let us compute ∆̂M,B
N (1B) by considering an element

(ι, λ,Ψ) ∈ DMR×(k). First, we have

(3.40) Γcomp
M,(10)
(ι,λ,Ψ) (1B) =

Γcomp
V ,(10)
(ι,λ,Ψ)(1) · 1DR = Γ−1Ψ (−e1)β(Ψ ⊗ 1) · 1DR = Ψ⋆.

Therefore,

∆̂M,B
N (1B) =

((
Γcomp

M,(10)
(ι,λ,Ψ)

)⊗2)−1
◦ ∆̂M,DR

G ◦ Γcomp
M,(10)
(ι,λ,Ψ) (1B)

=

((
Γcomp

M,(10)
(ι,λ,Ψ)

)⊗2)−1
◦ ∆̂M,DR

G (Ψ⋆)

=

((
Γcomp

M,(10)
(ι,λ,Ψ)

)⊗2)−1
(Ψ⋆ ⊗Ψ⋆) = 1⊗2B ,



THE DOUBLE SHUFFLE TORSOR IN TERMS OF BETTI AND DE RHAM COPRODUCTS 53

where the first and last equalities come from (3.40) and the second one from the fact
that Ψ ∈ DMR

ι
λ(k). �

Corollary 3.2.6.

(i) The pair (ŴB
N , ∆̂W ,B

N ) is an object in the category k-Hopftop.

(ii) The pair (M̂B
N , ∆̂M,B

N ) is an object in the category k-coalgtop.

(iii) The pair
(
(ŴB

N , ∆̂W ,B
N ), (M̂B

N , ∆̂M,B
N )

)
is an object in the category k-HAMCtop.

Proof.

(i) From Theorem 3.2.4, it follows that ∆̂W ,B
N is an algebra morphism. In addition,

one checks that the coassociativity of ∆̂W ,B
N follows from the coassociativity of

∆̂W ,DR
G .

(ii) From Theorem 3.2.4, it follows that ∆̂M,B
N is a k-module morphism. In addition,

one checks that the coassociativity of ∆̂M,B
N follows from the coassociativity of

∆̂M,DR
G .

(iii) It follows from (i) and (ii) and the fact that the pair (∆̂W ,B
N , ∆̂M,B

N ) is an element

of Copk-alg-modtop

(
ŴB

N ,M̂B
N

)
.

�

4. Expression of the torsor DMR×(k) in terms of the Betti and de Rham

coproducts

In this section, we show that DMR×(k) is a subtorsor of a stabilizer torsor of

the pair of coproducts
(
∆̂M,B

N , ∆̂M,DR
G

)
. In §4.1, we define the setwise stabilizers

StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂M,B

N , ∆̂M,DR
G

)
(k) and StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂W,B

N , ∆̂W,DR
G

)
(k)

and show that they are equipped with a torsor structure for the actions of the stabilizer

groups Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)

(
∆̂M,DR

G

)
(k) and Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)

(
∆̂W ,DR

G

)
(k)

respectively. In §4.2.1, we obtain a chain of inclusions of torsors involving these stabi-
lizers and DMR×(k).

4.1. The stabilizer subtorsors.

Definition 4.1.1.

(i) We denote StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂W ,B

N , ∆̂W ,DR
G

)
(k) the setwise stabilizer of

the pair of coproducts
(
∆̂W ,B

N , ∆̂W ,DR
G

)
∈ Copk-algtop(Ŵ

B
N ) × Copk-algtop(Ŵ

DR
G )

given by

StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂W ,B

N , ∆̂W ,DR
G

)
(k) :=

{
(ι, ν,Φ) ∈ Emb(G)× k

× × G(k〈〈X〉〉) |
(
Γcomp

W,(1)
(ι,ν,Φ)

)⊗2

◦ ∆̂W,B
N = ∆̂W,DR

G ◦ Γcomp
W,(1)
(ι,ν,Φ)

}
.

(ii) We denote StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂M,B

N , ∆̂M,DR
G

)
(k) the setwise stabilizer of

the pair of coproducts
(
∆̂M,B

N , ∆̂M,DR
G

)
∈ Copk-modtop(M̂

B
N )×Copk-modtop(Ŵ

DR
G )
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given by

StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂M,B

N , ∆̂M,DR
G

)
(k) :=

{
(ι, ν,Φ) ∈ Emb(G)× k

× × G(k〈〈X〉〉) |
(
Γcomp

M,(10)
(ι,ν,Φ)

)⊗2

◦ ∆̂M,B
N = ∆̂M,DR

G ◦ Γcomp
M,(10)
(ι,ν,Φ)

}
.

Remark 4.1.2. Theorem 3.2.4 implies that StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂W ,B

N , ∆̂W ,DR
G

)
(k)

and StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂M,B

N , ∆̂M,DR
G

)
(k) contain DMR×(k), which implies that

these are nonempty sets.

Proposition 4.1.3.

i. The pair
(
Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)

(
∆̂W,DR

G

)
(k), StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂W,B

N , ∆̂W,DR
G

)
(k)

)

is a subtorsor of
(
(Aut(G) × k×)⋉ G(k〈〈X〉〉),Emb(G) × k× × G(k〈〈X〉〉)

)
.

ii. The pair
(
Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)

(
∆̂M,DR

G

)
(k), StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂M,B

N , ∆̂M,DR
G

)
(k)

)

is a subtorsor of
(
(Aut(G) × k×)⋉ G(k〈〈X〉〉),Emb(G) × k× × G(k〈〈X〉〉)

)
.

In order the prove this, we will need the following Lemma:

Lemma 4.1.4 ([EF2, Lemma 2.6]). Let (H,T ) be a torsor, and let V, V ′ be k-modules.
Let ρ : H → Autk-mod(V ) be a group morphism and let ρ′ : T → Isok-mod(V

′, V ) be
a map such that for any h ∈ H, x ∈ T , one has ρ′(h · x) = ρ(h) ◦ ρ′(x). Let v ∈ V
and v′ ∈ V ′. Then StabH(v) := {h ∈ H | ρ(h)(v) = v} is a subgroup of H, and either
StabT (v, v

′) := {x ∈ T | ρ′(v′) = v} is empty, or (StabH(v),StabT (v, v
′)) is a subtorsor

of (H,T ).

Proof of Proposition 4.1.3. It follows from Lemma 4.1.4 by setting :

• (H,T ) = ((Aut(G)× k×)⋉ G(k〈〈X〉〉),Emb(G)× k× × G(k〈〈X〉〉));

• V = Copk-mod(Ŵ
DR
G ) (resp. V = Copk-mod(M̂

DR
G ));

• V ′ = Copk-mod(Ŵ
B
N ) (resp. V ′ = Copk-mod(M̂

B
N ));

• v = ∆̂W ,DR
G (resp. v = ∆̂M,DR

G );

• v′ = ∆̂W ,B
N (resp. v′ = ∆̂M,B

N );

• ρ : (φ, λ,Ψ) 7→

(
V ∋ DWDR 7→

(
Γaut

W ,(1)
(φ,λ,Ψ)

)⊗2
◦DWDR ◦

(
Γaut

W ,(1)
(φ,λ,Ψ)

)−1
∈ V

)
(resp.

ρ : (φ, λ,Ψ) 7→

(
V ∋ DMDR 7→

(
Γaut

M,(10)
(φ,λ,Ψ)

)⊗2
◦DMDR ◦

(
Γaut

M,(10)
(φ,λ,Ψ)

)−1
∈ V

)
);
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• ρ′ : (φ, λ,Ψ) 7→

(
V ′ ∋ DWB 7→

(
Γcomp

W ,(1)
(φ,λ,Ψ)

)⊗2
◦DWB ◦

(
Γcomp

W ,(1)
(φ,λ,Ψ)

)−1
∈ V

)
(resp.

ρ′ : (φ, λ,Ψ) 7→

(
V ′ ∋ DMB 7→

(
Γcomp

M,(10)
(φ,λ,Ψ)

)⊗2
◦DMB ◦

(
Γcomp

M,(10)
(φ,λ,Ψ)

)−1
∈ V

)
).

Finally, for (φ, λ,Ψ) ∈ H and (ι, ν,Φ) ∈ T , the identity

ρ((φ, λ,Ψ) · (ι, ν,Φ)) = ρ(φ, λ,Ψ) ◦ ρ′(ι, ν,Φ)

follows from Proposition 3.2.3. �

4.2. Inclusion of stabilizer torsors.

Theorem 4.2.1. We have the following inclusions of torsors
(
(Aut(G) × k×)⋉ DMR

G
0 (k),DMR×(k)

)

∩(
Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)

(
∆̂M,DR

G

)
(k),StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂M,B

N , ∆̂M,DR
G

)
(k)

)

∩(
Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)

(
∆̂W ,DR

G

)
(k),StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂W ,B

N , ∆̂W ,DR
G

)
(k)

)

∩(
(Aut(G)× k×)⋉ G(k〈〈X〉〉),Emb(G) × k× × G(k〈〈X〉〉)

)

In order the prove this, we will need the following Lemmas:

Lemma 4.2.2 ([EF2, Lemma 2.3]). Let (H,T ) be a torsor and let (H ′, T ′) and (H ′′, T ′′)
be subtorsors of (H,T ) such that T ′ ∩ T ′′ 6= ∅. Then (H ′ ∩H ′′, T ′ ∩ T ′′) is a subtorsor
of both (H ′, T ′) and (H ′′, T ′′), therefore of (H,T ).

Lemma 4.2.3 ([EF2, Lemma 2.7]). Let (H,T ) be a torsor and let (H0, T0) and (H1, T1)
be subtorsors of (H,T ) such that T0 ⊂ T1. Then (H0, T0) is a subtorsor of (H1, T1). If,
moreover, H0 = H1 then the subtorsors (H0, T0) and (H1, T1) are equal.

Proof of Theorem 4.2.1. The group-part inclusion is shown in Corollary 2.2.5. The first
and last set-part inclusions are immediate. It remains to show that

StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂M,B

N , ∆̂M,DR
G

)
(k) ⊂ StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂W,B

N , ∆̂W,DR
G

)
(k).

In Lemmas 4.2.2 and 4.2.3, set

(H,T ) =
(
(Aut(G)× k×)⋉ G(k〈〈X〉〉),Emb(G)× k× × G(k〈〈X〉〉)

)
.

First, let us apply Lemma 4.2.2 for

• (H ′, T ′) =
(
Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)

(
∆̂M,DR

G

)
(k), StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂M,B

N
, ∆̂M,DR

G

)
(k)

)
;

• (H ′′, T ′′) =
(
Stab(Aut(G)×k×)⋉G(k〈〈X〉〉)

(
∆̂W,DR

G

)
(k), StabEmb(G)×k××G(k〈〈X〉〉)

(
∆̂W,B

N
, ∆̂W,DR

G

)
(k)

)
.

From Remark 4.1.2, we have that T ′ ∩ T ′′ 6= ∅. Therefore, (H ′ ∩ H ′′, T ′ ∩ T ′′) is a
subtorsor of (H ′′, T ′′). Second, let us apply Lemma 4.2.3 for

• (H0, T0) = (H ′ ∩H ′′, T ′ ∩ T ′′);

• (H1, T1) = (H ′, T ′).
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We have that T0 = T ′ ∩ T ′′ ⊂ T ′ = T1. In addition,

H0 = H ′ ∩H ′′ = H ′ = H1,

where the second equality follows from the stabilizer group inclusion in Corollary 2.2.5.
Finally, it follows that T ′ ∩ T ′′ = T0 = T1 = T ′. Thus T ′ ⊂ T ′′, which is the wanted
inclusion of setwise stabilizers. �
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